全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Lp Polyharmonic Dirichlet Problems in the Upper Half Plane

DOI: 10.4236/apm.2015.514077, PP. 828-834

Keywords: Dirichlet Problem, Polyharmonic Function, Higher Order Poisson Kernels, Higher Order Pompeiu Operators, Non-Tangential Maximal Function, Uniqueness

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this article, a class of Dirichlet problem with Lp boundary data for poly-harmonic function in the upper half plane is mainly investigated. By introducing a sequence of kernel functions called higher order Poisson kernels and a hierarchy of integral operators called higher order Pompeiu operators, we obtain a main result on integral representation solution as well as the uniqueness of the polyharmonic Dirichlet problem under a certain estimate.

References

[1]  Aronszajn, N., Cresse, T. and Lipkin, L. (1983) Polyharmonic Functions, Oxford Math. Clarendon, Oxford.
[2]  Goursat, E. (1898) Sur I’équation ΔΔu = 0. Bulletin de la Société Mathématique de France, 26, 236-237.
[3]  Vekua, I.N. (1976) On One Method of Solving the First Biharmonic Boundary Value Problem and the Dirichlet Problem. American Mathematical Society Translations, 104, 104-111.
[4]  Begehr, H., Du, J. and Wang, Y. (2008) A Dirichlet Problem for Polyharmonic Functions. Annali di Matematica Pura ed Applicata, 187, 435-457.
http://dx.doi.org/10.1007/s10231-007-0050-5
[5]  Begehr, H. and Gaertner, E. (2007) A Dirichlet Problem for the Inhomogeneous Polyharmonic Equations in the Upper Half Plane. Georgian Mathematical Journal, 14, 33-52.
[6]  Verchota, G.C. (2005) The Biharmonic Neumann Problem in Lipschitz Domain. Acta Mathematica, 194, 217-279.
http://dx.doi.org/10.1007/BF02393222
[7]  Du, Z. (2008) Boundary Value Problems for Higher Order Complex Differential Equations. Doctoral Dissertation, Freie Universität Berlin, Berlin.
[8]  Du, Z., Qian, T. and Wang, J.X. (2012) Polyharmonic Dirichlet Problem in Regular Domain: The Upper Half Plane. Journal of Differential Equations, 252, 1789-1812.
http://dx.doi.org/10.1016/j.jde.2011.08.024
[9]  Stein, E.M. and Weiss, G. (1971) Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton, New Jersey.
[10]  Garnett, J. (2007) Bounded Analytic Functions. Springer, New York.
[11]  Begehr, H. and Hile, G.N. (1997) A Hierarchy of Integral Operators. Rocky Mountain Journal of Mathematics, 27, 669-706.
http://dx.doi.org/10.1216/rmjm/1181071888

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133