Rhinovirus (RV) is the most prevalent human respiratory virus and is responsible for at least half of all common colds. RV infections may result in a broad spectrum of effects that range from asymptomatic infections to severe lower respiratory illnesses. The basis for inter-individual variation in the response to RV infection is not well understood. In this study, we explored whether host genetic variation is associated with variation in gene expression response to RV infections between individuals. To do so, we obtained genome-wide genotype and gene expression data in uninfected and RV-infected peripheral blood mononuclear cells (PBMCs) from 98 individuals. We mapped local and distant genetic variation that is associated with inter-individual differences in gene expression levels (eQTLs) in both uninfected and RV-infected cells. We focused specifically on response eQTLs (reQTLs), namely, genetic associations with inter-individual variation in gene expression response to RV infection. We identified local reQTLs for 38 genes, including genes with known functions in viral response (UBA7, OAS1, IRF5) and genes that have been associated with immune and RV-related diseases (e.g., ITGA2, MSR1, GSTM3). The putative regulatory regions of genes with reQTLs were enriched for binding sites of virus-activated STAT2, highlighting the role of condition-specific transcription factors in genotype-by-environment interactions. Overall, we suggest that the 38 loci associated with inter-individual variation in gene expression response to RV-infection represent promising candidates for affecting immune and RV-related respiratory diseases.
References
[1]
Arruda E, Pitkaranta A, Witek TJ Jr., Doyle CA, Hayden FG (1997) Frequency and natural history of rhinovirus infections in adults during autumn. J Clin Microbiol 35: 2864–2868. pmid:9350748
[2]
Andrewes CH, Chaproniere DM, Gompels AE, Pereira HG, Roden AT (1953) Propagation of common-cold virus in tissue cultures. Lancet 265: 546–547. pmid:13097995 doi: 10.1016/s0140-6736(53)90279-7
[3]
Fox JP, Cooney MK, Hall CE (1975) The Seattle virus watch. V. Epidemiologic observations of rhinovirus infections, 1965–1969, in families with young children. Am J Epidemiol 101: 122–143. pmid:164769
[4]
Winther B, Hayden FG, Hendley JO (2006) Picornavirus infections in children diagnosed by RT-PCR during longitudinal surveillance with weekly sampling: Association with symptomatic illness and effect of season. J Med Virol 78: 644–650. pmid:16555289 doi: 10.1002/jmv.20588
[5]
Winther B (2011) Rhinovirus infections in the upper airway. Proc Am Thorac Soc 8: 79–89. doi: 10.1513/pats.201006-039RN. pmid:21364225
[6]
Gern JE (2010) The ABCs of rhinoviruses, wheezing, and asthma. J Virol 84: 7418–7426. doi: 10.1128/JVI.02290-09. pmid:20375160
[7]
Helminen M, Nuolivirta K, Virta M, Halkosalo A, Korppi M, et al. (2008) IL-10 gene polymorphism at -1082 A/G is associated with severe rhinovirus bronchiolitis in infants. Pediatr Pulmonol 43: 391–395. doi: 10.1002/ppul.20793. pmid:18286551
[8]
Caliskan M, Bochkov YA, Kreiner-Moller E, Bonnelykke K, Stein MM, et al. (2013) Rhinovirus wheezing illness and genetic risk of childhood-onset asthma. N Engl J Med 368: 1398–1407. doi: 10.1056/NEJMoa1211592. pmid:23534543
[9]
Kelly JT, Busse WW (2008) Host immune responses to rhinovirus: mechanisms in asthma. J Allergy Clin Immunol 122: 671–682; quiz 683–674. doi: 10.1016/j.jaci.2008.08.013. pmid:19014757
[10]
Bochkov YA, Hanson KM, Keles S, Brockman-Schneider RA, Jarjour NN, et al. (2010) Rhinovirus-induced modulation of gene expression in bronchial epithelial cells from subjects with asthma. Mucosal Immunol 3: 69–80. doi: 10.1038/mi.2009.109. pmid:19710636
[11]
Chen Y, Hamati E, Lee PK, Lee WM, Wachi S, et al. (2006) Rhinovirus induces airway epithelial gene expression through double-stranded RNA and IFN-dependent pathways. Am J Respir Cell Mol Biol 34: 192–203. pmid:16210696 doi: 10.1165/rcmb.2004-0417oc
[12]
Proud D, Turner RB, Winther B, Wiehler S, Tiesman JP, et al. (2008) Gene expression profiles during in vivo human rhinovirus infection: insights into the host response. Am J Respir Crit Care Med 178: 962–968. doi: 10.1164/rccm.200805-670OC. pmid:18658112
[13]
Arruda E, Boyle TR, Winther B, Pevear DC, Gwaltney JM Jr., et al. (1995) Localization of human rhinovirus replication in the upper respiratory tract by in situ hybridization. J Infect Dis 171: 1329–1333. pmid:7751712 doi: 10.1093/infdis/171.5.1329
[14]
Broberg E, Niemela J, Lahti E, Hyypia T, Ruuskanen O, et al. (2011) Human rhinovirus C—associated severe pneumonia in a neonate. J Clin Virol 51: 79–82. doi: 10.1016/j.jcv.2011.01.018. pmid:21342784
[15]
Fuji N, Suzuki A, Lupisan S, Sombrero L, Galang H, et al. (2011) Detection of human rhinovirus C viral genome in blood among children with severe respiratory infections in the Philippines. PLoS One 6: e27247. doi: 10.1371/journal.pone.0027247. pmid:22087272
[16]
Tapparel C, L'Huillier AG, Rougemont AL, Beghetti M, Barazzone-Argiroffo C, et al. (2009) Pneumonia and pericarditis in a child with HRV-C infection: a case report. J Clin Virol 45: 157–160. doi: 10.1016/j.jcv.2009.03.014. pmid:19427260
[17]
Gern JE, Vrtis R, Kelly EA, Dick EC, Busse WW (1996) Rhinovirus produces nonspecific activation of lymphocytes through a monocyte-dependent mechanism. J Immunol 157: 1605–1612. pmid:8759745
[18]
Yamaya M, Sasaki H (2003) Rhinovirus and asthma. Viral Immunol 16: 99–109. pmid:12828863 doi: 10.1089/088282403322017857
[19]
Lai C, Struckhoff JJ, Schneider J, Martinez-Sobrido L, Wolff T, et al. (2009) Mice lacking the ISG15 E1 enzyme UbE1L demonstrate increased susceptibility to both mouse-adapted and non-mouse-adapted influenza B virus infection. J Virol 83: 1147–1151. doi: 10.1128/JVI.00105-08. pmid:19004958
[20]
Yuan W, Krug RM (2001) Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J 20: 362–371. pmid:11157743 doi: 10.1093/emboj/20.3.362
[21]
Malathi K, Paranjape JM, Bulanova E, Shim M, Guenther-Johnson JM, et al. (2005) A transcriptional signaling pathway in the IFN system mediated by 2'-5'-oligoadenylate activation of RNase L. Proc Natl Acad Sci U S A 102: 14533–14538. pmid:16203993 doi: 10.1073/pnas.0507551102
[22]
Silverman RH (2007) Viral encounters with 2',5'-oligoadenylate synthetase and RNase L during the interferon antiviral response. J Virol 81: 12720–12729. pmid:17804500 doi: 10.1128/jvi.01471-07
[23]
Barnes BJ, Moore PA, Pitha PM (2001) Virus-specific activation of a novel interferon regulatory factor, IRF-5, results in the induction of distinct interferon alpha genes. J Biol Chem 276: 23382–23390. pmid:11303025 doi: 10.1074/jbc.m101216200
[24]
Becker KG, Barnes KC, Bright TJ, Wang SA (2004) The genetic association database. Nat Genet 36: 431–432. pmid:15118671 doi: 10.1038/ng0504-431
[25]
Fedetz M, Matesanz F, Caro-Maldonado A, Fernandez O, Tamayo JA, et al. (2006) OAS1 gene haplotype confers susceptibility to multiple sclerosis. Tissue Antigens 68: 446–449. pmid:17092260 doi: 10.1111/j.1399-0039.2006.00694.x
[26]
Litonjua AA, Lasky-Su J, Schneiter K, Tantisira KG, Lazarus R, et al. (2008) ARG1 is a novel bronchodilator response gene: screening and replication in four asthma cohorts. Am J Respir Crit Care Med 178: 688–694. doi: 10.1164/rccm.200709-1363OC. pmid:18617639
[27]
Morgan AR, Han DY, Lam WJ, Fraser AG, Ferguson LR (2010) Association analysis of 3p21 with Crohn's disease in a New Zealand population. Hum Immunol 71: 602–609. doi: 10.1016/j.humimm.2010.03.003. pmid:20307617
[28]
Sigurdsson S, Nordmark G, Goring HH, Lindroos K, Wiman AC, et al. (2005) Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet 76: 528–537. pmid:15657875 doi: 10.1086/428480
[29]
Wikman H, Piirila P, Rosenberg C, Luukkonen R, Kaaria K, et al. (2002) N-Acetyltransferase genotypes as modifiers of diisocyanate exposure-associated asthma risk. Pharmacogenetics 12: 227–233. pmid:11927838 doi: 10.1097/00008571-200204000-00007
[30]
Choudhry S, Taub M, Mei R, Rodriguez-Santana J, Rodriguez-Cintron W, et al. (2008) Genome-wide screen for asthma in Puerto Ricans: evidence for association with 5q23 region. Hum Genet 123: 455–468. doi: 10.1007/s00439-008-0495-7. pmid:18401594
[31]
Janssen R, Bont L, Siezen CL, Hodemaekers HM, Ermers MJ, et al. (2007) Genetic susceptibility to respiratory syncytial virus bronchiolitis is predominantly associated with innate immune genes. J Infect Dis 196: 826–834. pmid:17703412 doi: 10.1086/520886
[32]
Ohar JA, Hamilton RF Jr., Zheng S, Sadeghnejad A, Sterling DA, et al. (2010) COPD is associated with a macrophage scavenger receptor-1 gene sequence variation. Chest 137: 1098–1107. doi: 10.1378/chest.09-1655. pmid:20081102
[33]
Young RP, Hopkins RJ, Hay BA, Epton MJ, Mills GD, et al. (2009) A gene-based risk score for lung cancer susceptibility in smokers and ex-smokers. Postgrad Med J 85: 515–524. doi: 10.1136/pgmj.2008.077107. pmid:19789190
[34]
Flamant C, Henrion-Caude A, Boelle PY, Bremont F, Brouard J, et al. (2004) Glutathione-S-transferase M1, M3, P1 and T1 polymorphisms and severity of lung disease in children with cystic fibrosis. Pharmacogenetics 14: 295–301. pmid:15115915 doi: 10.1097/00008571-200405000-00004
[35]
Lee MN, Ye C, Villani AC, Raj T, Li W, et al. (2014) Common genetic variants modulate pathogen-sensing responses in human dendritic cells. Science 343: 1246980. doi: 10.1126/science.1246980. pmid:24604203
[36]
Maranville JC, Luca F, Richards AL, Wen X, Witonsky DB, et al. (2011) Interactions between glucocorticoid treatment and cis-regulatory polymorphisms contribute to cellular response phenotypes. PLoS Genet 7: e1002162. doi: 10.1371/journal.pgen.1002162. pmid:21750684
[37]
Consortium EP, Bernstein BE, Birney E, Dunham I, Green ED, et al. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489: 57–74. doi: 10.1038/nature11247. pmid:22955616
[38]
Park C, Li S, Cha E, Schindler C (2000) Immune response in Stat2 knockout mice. Immunity 13: 795–804. pmid:11163195 doi: 10.1016/s1074-7613(00)00077-7
[39]
Rumble SM, Lacroute P, Dalca AV, Fiume M, Sidow A, et al. (2009) SHRiMP: accurate mapping of short color-space reads. PLoS Comput Biol 5: e1000386. doi: 10.1371/journal.pcbi.1000386. pmid:19461883
[40]
Fehrmann RS, Jansen RC, Veldink JH, Westra HJ, Arends D, et al. (2011) Trans-eQTLs reveal that independent genetic variants associated with a complex phenotype converge on intermediate genes, with a major role for the HLA. PLoS Genet 7: e1002197. doi: 10.1371/journal.pgen.1002197. pmid:21829388
[41]
Barreiro LB, Tailleux L, Pai AA, Gicquel B, Marioni JC, et al. (2012) Deciphering the genetic architecture of variation in the immune response to Mycobacterium tuberculosis infection. Proc Natl Acad Sci U S A 109: 1204–1209. doi: 10.1073/pnas.1115761109. pmid:22233810
[42]
Idaghdour Y, Quinlan J, Goulet JP, Berghout J, Gbeha E, et al. (2012) Evidence for additive and interaction effects of host genotype and infection in malaria. Proc Natl Acad Sci U S A 109: 16786–16793. doi: 10.1073/pnas.1204945109. pmid:22949651
[43]
Fairfax BP, Humburg P, Makino S, Naranbhai V, Wong D, et al. (2014) Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science 343: 1246949. doi: 10.1126/science.1246949. pmid:24604202
[44]
Fuss IJ, Kanof ME, Smith PD, Zola H (2009) Isolation of whole mononuclear cells from peripheral blood and cord blood. Curr Protoc Immunol Chapter 7: Unit7 1.
[45]
Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19: 1655–1664. doi: 10.1101/gr.094052.109. pmid:19648217
[46]
Delaneau O, Marchini J, Zagury JF (2012) A linear complexity phasing method for thousands of genomes. Nat Methods 9: 179–181. doi: 10.1038/nmeth.1785. pmid:22138821
[47]
Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5: e1000529. doi: 10.1371/journal.pgen.1000529. pmid:19543373
[48]
Du P, Kibbe WA, Lin SM (2008) lumi: a pipeline for processing Illumina microarray. Bioinformatics 24: 1547–1548. doi: 10.1093/bioinformatics/btn224. pmid:18467348
[49]
Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD (2012) The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28: 882–883. doi: 10.1093/bioinformatics/bts034. pmid:22257669
[50]
Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44–57. doi: 10.1038/nprot.2008.211. pmid:19131956
[51]
Shabalin AA (2012) Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28: 1353–1358. doi: 10.1093/bioinformatics/bts163. pmid:22492648
[52]
Millstein J (2013) fdrci: Permutation-based FDR Point and Confidence Interval Estimation. R package version 20.
[53]
Ward LD, Kellis M (2012) HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 40: D930–934. doi: 10.1093/nar/gkr917. pmid:22064851
[54]
Pers TH, Timshel P, Hirschhorn JN (2014) SNPsnap: a Web-based tool for identification and annotation of matched SNPs. Bioinformatics.