[1] | Burga A, Lehner B. Predicting phenotypic variation from genotypes, phenotypes and a combination of the two. Curr Opin Biotechnol. 2013; 24: 803–809. doi: 10.1016/j.copbio.2013.03.004. pmid:23540420
|
[2] | Lehner B. Genotype to phenotype: lessons from model organisms for human genetics. Nat Rev Genet. 2013; 14: 168–178. doi: 10.1038/nrg3404. pmid:23358379
|
[3] | Fay JC The molecular basis of phenotypic variation in yeast. Curr Opin Genet Dev. 2013; 23: 672–677. doi: 10.1016/j.gde.2013.10.005. pmid:24269094
|
[4] | Carter H, Hofree M, Ideker T. Genotype to phenotype via network analysis. Curr Opin Genet Dev. 2013; 23: 611–621. doi: 10.1016/j.gde.2013.10.003. pmid:24238873
|
[5] | van der Sijde MR, Ng A, Fu J. Systems genetics: From GWAS to disease pathways. Biochim Biophys Acta. 2014; 1842: 1903–1909. doi: 10.1016/j.bbadis.2014.04.025. pmid:24798234
|
[6] | Battle A, Montgomery SB Determining causality and consequence of expression quantitative trait loci. Hum Genet. 2014; 133: 727–735. doi: 10.1007/s00439-014-1446-0. pmid:24770875
|
[7] | Smith EN, Kruglyak L Gene-environment interaction in yeast gene expression. PLoS Biol. 2008; 6: e83. doi: 10.1371/journal.pbio.0060083. pmid:18416601
|
[8] | Cookson W, Liang L, Abecasis G, Moffatt M, Lathrop M. Mapping complex disease traits with global gene expression. Nat Rev Genet. 2009; 10: 184–194. doi: 10.1038/nrg2537. pmid:19223927
|
[9] | Gagneur J, Stegle O, Zhu C, Jakob P, Tekkedil MM, Aiyar RS, et al., Genotype-environment interactions reveal causal pathways that mediate genetic effects on phenotype. PLoS Genet. 2013; 9: e1003803. doi: 10.1371/journal.pgen.1003803. pmid:24068968
|
[10] | Bar-Joseph Z, Gitter A, Simon I. Studying and modelling dynamic biological processes using time-series gene expression data. Nat Rev Genet. 2012; 13: 552–564. doi: 10.1038/nrg3244. pmid:22805708
|
[11] | Gerrits A, Li Y, Tesson BM, Bystrykh LV, Weersing E, Ausema A, Dontje B, et al. Expression quantitative trait loci are highly sensitive to cellular differentiation state. PLoS Genet. 2009; 5: e1000692. doi: 10.1371/journal.pgen.1000692. pmid:19834560
|
[12] | Montgomery SB, Dermitzakis ET. From expression QTLs to personalized transcriptomics. Nat Rev Genet. 2011; 12: 277–282. doi: 10.1038/nrg2969. pmid:21386863
|
[13] | Francesconi M, Lehner B. The effects of genetic variation on gene expression dynamics during development. Mol Syst Biol. 2013; 505: 208–211. doi: 10.1038/nature12772
|
[14] | Kim HS, Huh J, Fay JC. Dissecting the pleiotropic consequences of a quantitative trait nucleotide. FEMS Yeast Res. 2009; 9: 713–722. doi: 10.1111/j.1567-1364.2009.00516.x. pmid:19456872
|
[15] | Deutschbauer AM, Davis RW. Quantitative trait loci mapped to single-nucleotide resolution in yeast. Nat Genet. 2005; 37: 1333–1340. pmid:16273108 doi: 10.1038/ng1674
|
[16] | Lee S- I, Dudley AM, Drubin D, Silver PA, Krogan NJ, Pe'er D, et al. Learning a prior on regulatory potential from eQTL data. PLoS Genet. 2009; 5: e1000358. doi: 10.1371/journal.pgen.1000358. pmid:19180192
|
[17] | Steinmetz LM, Sinha H, Richards DR, Spiegelman JI, Oefner PJ, McCusker JH, et al. Dissecting the architecture of a quantitative trait locus in yeast. Nature. 2002; 416: 326–330. pmid:11907579 doi: 10.1038/416326a
|
[18] | Sinha H, Nicholson BP, Steinmetz LM, McCusker JH. Complex genetic interactions in a quantitative trait locus. PLoS Genet. 2006; 2: e13. pmid:16462944 doi: 10.1371/journal.pgen.0020013
|
[19] | Demogines A, Smith E, Kruglyak L, Alani E. Identification and dissection of a complex DNA repair sensitivity phenotype in Baker's yeast. PLoS Genet. 2008; 4: e1000123. doi: 10.1371/journal.pgen.1000123. pmid:18617998
|
[20] | Dimitrov LN, Brem RB, Kruglyak L, Gottschling DE. Polymorphisms in multiple genes contribute to the spontaneous mitochondrial genome instability of Saccharomyces cerevisiae S288c strains. Genetics. 2009; 183: 365–383. doi: 10.1534/genetics.109.104497. pmid:19581448
|
[21] | Swinnen S, Schaerlaekens K, Pais T, Claesen J, Hubmann G, Yang Y, et al. Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis. Genome Res. 2012; 22: 975–984. doi: 10.1101/gr.131698.111. pmid:22399573
|
[22] | Lewis JA, Broman AT, Will J, Gasch AP. Genetic architecture of ethanol-responsive transcriptome variation in Saccharomyces cerevisiae strains. Genetics. 2014; 198: 369–382 doi: 10.1534/genetics.114.167429. pmid:24970865
|
[23] | van Werven FJ, Amon A. Regulation of entry into gametogenesis. Philos Trans R Soc B Biol Sci. 2011; 366: 3521–3531. doi: 10.1098/rstb.2011.0081. pmid:22084379
|
[24] | Neiman AM. Sporulation in the budding yeast Saccharomyces cerevisiae. Genetics. 2011; 189: 737–765. doi: 10.1534/genetics.111.127126. pmid:22084423
|
[25] | Deutschbauer AM, Williams RM, Chu AM, Davis RW. Parallel phenotypic analysis of sporulation and postgermination growth in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2002; 99: 15530–15535. pmid:12432101 doi: 10.1073/pnas.202604399
|
[26] | Lorenz K, Cohen BA. Causal variation in yeast sporulation tends to reside in a pathway bottleneck. PLoS Genet. 2014; 10: e1004634. doi: 10.1371/journal.pgen.1004634. pmid:25211152
|
[27] | Honigberg SM. Signal pathway integration in the switch from the mitotic cell cycle to meiosis in yeast. J Cell Sci. 2003; 116: 2137–2147. pmid:12730290 doi: 10.1242/jcs.00460
|
[28] | Kassir Y, Granot D, Simchen G. IME1, a positive regulator gene of meiosis in S. cerevisiae. Cell. 1988; 52: 853–862. pmid:3280136 doi: 10.1016/0092-8674(88)90427-8
|
[29] | Tsuchiya D, Yang Y, Lacefield S. Positive feedback of NDT80 expression ensures irreversible meiotic commitment in budding yeast. PLoS Genet. 2014; 10: e1004398. doi: 10.1371/journal.pgen.1004398. pmid:24901499
|
[30] | Mitchell AP. Control of meiotic gene expression in Saccharomyces cerevisiae. Microbiol Rev. 1994; 58: 56–70. pmid:8177171
|
[31] | Sudarsanam P, Cohen BA. Single nucleotide variants in transcription factors associate more tightly with phenotype than with gene expression. PLoS Genet. 2014; 10: e1004325. doi: 10.1371/journal.pgen.1004325. pmid:24784239
|
[32] | Neiman AM. Ascospore formation in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2005; 69: 565–584. pmid:16339736 doi: 10.1128/mmbr.69.4.565-584.2005
|
[33] | Liu Z, Butow RA. Mitochondrial retrograde signaling. Ann Rev Genet. 2006; 40: 159–185. pmid:16771627 doi: 10.1146/annurev.genet.40.110405.090613
|
[34] | Broach JR. Nutritional control of growth and development in yeast. Genetics. 2012; 192: 73–105. doi: 10.1534/genetics.111.135731. pmid:22964838
|
[35] | Ray D, Ye P. Characterization of the metabolic requirements in yeast meiosis. PLoS ONE. 2013; 8: e63707. doi: 10.1371/journal.pone.0063707. pmid:23675502
|
[36] | Liao X, Butow RA. RTG1 and RTG2: two yeast genes required for a novel path of communication from mitochondria to the nucleus. Cell. 1993; 72: 61–71. pmid:8422683 doi: 10.1016/0092-8674(93)90050-z
|
[37] | Scott S, Abul-Hamd AT, Cooper TG. Roles of the Dal82p domains in allophanate/oxalurate-dependent gene expression in Saccharomyces cerevisiae. J Biol Chem. 2000; 275: 30886–30893. pmid:10906145 doi: 10.1074/jbc.m005624200
|
[38] | Jia Y, Rothermel B, Thornton J, Butow RA. A basic helix-loop-helix-leucine zipper transcription complex in yeast functions in a signaling pathway from mitochondria to the nucleus. Mol Cell Biol. 1997; 17: 1110–1117. pmid:9032238
|
[39] | Rabitsch KP, Tóth A, Gálová M, Schleiffer A, Schaffner G, Aigner E, et al. A screen for genes required for meiosis and spore formation based on whole-genome expression. Curr Biol. 2001; 11: 1001–1009. pmid:11470404 doi: 10.1016/s0960-9822(01)00274-3
|
[40] | Primig M, Williams RM, Winzeler EA, Tevzadze GG, Conway AR, Hwang SY, et al. The core meiotic transcriptome in budding yeasts. Nat Genet. 2000; 26: 415–423. pmid:11101837 doi: 10.1038/82539
|
[41] | Sekito T, Thornton J, Butow RA. Mitochondria-to-nuclear signaling is regulated by the subcellular localization of the transcription factors Rtg1p and Rtg3p. Mol Biol Cell. 2000; 11: 2103–2115. pmid:10848632 doi: 10.1091/mbc.11.6.2103
|
[42] | Jambhekar A, Amon A. Control of meiosis by respiration. Curr Biol. 2008; 18: 969–975. doi: 10.1016/j.cub.2008.05.047. pmid:18595705
|
[43] | Fazlollahi M, Lee E, Muroff I, Lu XJ, Gomez-Alcala P, Causton HC, et al. Harnessing natural sequence variation to dissect post-transcriptional regulatory networks in yeast. G3 (Bethesda). 2014; 4: 1539–1553. doi: 10.1534/g3.114.012039. pmid:24938291
|
[44] | Gerber AP, Herschlag D, Brown PO. Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol. 2004; 2: e79. pmid:15024427 doi: 10.1371/journal.pbio.0020079
|
[45] | Civelek M, Lusis AJ. Systems genetics approaches to understand complex traits. Nat Rev Genet. 2014; 15: 34–48. doi: 10.1038/nrg3575. pmid:24296534
|
[46] | Westra HJ, Franke L. From genome to function by studying eQTLs. Biochim Biophys Acta. 2014; 1842: 1896–1902. doi: 10.1016/j.bbadis.2014.04.024. pmid:24798236
|
[47] | Saint Pierre A, Génin E How important are rare variants in common disease? Brief Funct Genomics. 2014; 13: 353–361. doi: 10.1093/bfgp/elu025. pmid:25005607
|
[48] | Barbour JA, Turner N. Mitochondrial stress signaling promotes cellular adaptations. Int J Cell Biol. 2014; 2014: 1–12. doi: 10.1155/2014/156020
|
[49] | Chen XJ, Wang X, Kaufman BA, Butow RA. Aconitase couples metabolic regulation to mitochondrial DNA maintenance. Science. 2005; 307: 714–717. pmid:15692048 doi: 10.1126/science.1106391
|
[50] | May-Panloup P, Chrétien MF, Jacques C, Vasseur C, Malthièry Y, Reynier P. Low oocyte mitochondrial DNA content in ovarian insufficiency. Hum Reprod. 2005; 20: 593–597. pmid:15608038 doi: 10.1093/humrep/deh667
|
[51] | Starovoytova AN, Sorokin MI, Sokolov SS, Severin FF, Knorre DA. Mitochondrial signaling in Saccharomyces cerevisiae pseudohyphae formation induced by butanol. FEMS Yeast Res. 2013; 13: 367–374. doi: 10.1111/1567-1364.12039. pmid:23448552
|
[52] | Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, et al. Population genomics of domestic and wild yeasts. Nature. 2009; 458: 337–341. doi: 10.1038/nature07743. pmid:19212322
|
[53] | Enyenihi AH, Saunders WS. Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae. Genetics. 2003; 163: 47–54. pmid:12586695
|
[54] | Chu S, DeRisi J, Eisen M, Mulholland J, Botstein D, Brown PO, et al. The transcriptional program of sporulation in budding yeast. Science. 1998; 282: 699–705. pmid:9784122 doi: 10.1126/science.282.5389.699
|
[55] | Mortimer RK, Johnston JR. Genealogy of principal strains of the yeast genetic stock center. Genetics. 1986; 113: 35–43. pmid:3519363
|
[56] | Anderson JB, Funt J, Thompson DA, Prabhu S, Socha A, Sirjusingh C, et al. Determinants of divergent adaptation and Dobzhansky-Muller interaction in experimental yeast populations. Curr Biol. 2010; 20: 1383–1388. doi: 10.1016/j.cub.2010.06.022. pmid:20637622
|
[57] | Warringer J, Z?rg? E, Cubillos FA, Zia A, Gjuvsland A, Simpson JT, et al. Trait variation in yeast is defined by population history. PLoS Genet. 2011; 7: e1002111. doi: 10.1371/journal.pgen.1002111. pmid:21698134
|
[58] | Zhu J, Zhang B, Smith EN, Drees B, Brem RB, Kruglyak L, et al. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat Genet. 2008; 40: 854–861. doi: 10.1038/ng.167. pmid:18552845
|
[59] | Saint-Georges Y, Garcia M, Delaveau T, Jourdren L, Le Crom S, Lemoine S, et al. Yeast mitochondrial biogenesis: a role for the PUF RNA-binding protein Puf3p in mRNA localization. PLoS ONE. 2008; 3: e2293. doi: 10.1371/journal.pone.0002293. pmid:18523582
|
[60] | Devaux F, Lelandais G, Garcia M, Goussard S, Jacq C. Posttranscriptional control of mitochondrial biogenesis: spatio-temporal regulation of the protein import process. FEBS Letters. 2010; 584: 4273–4279. doi: 10.1016/j.febslet.2010.09.030. pmid:20875412
|
[61] | Tadauchi T, Inada T, Matsumoto K, Irie K. Posttranscriptional regulation of HO expression by the Mkt1-Pbp1 complex. Mol Cell Biol. 2004; 24: 3670–3681. pmid:15082763 doi: 10.1128/mcb.24.9.3670-3681.2004
|
[62] | Singh A, Minia I, Droll D, Fadda A, Clayton C, Erben E. Trypanosome MKT1 and the RNA-binding protein ZC3H11: interactions and potential roles in post-transcriptional regulatory networks. Nucleic Acids Res. 2014; 42: 4652–4668. doi: 10.1093/nar/gkt1416. pmid:24470144
|
[63] | Kedersha N, Anderson P. Mammalian stress granules and processing bodies. Methods Enzymol. 2007; 431: 61–81 pmid:17923231 doi: 10.1016/s0076-6879(07)31005-7
|
[64] | Swetloff A, Conne B, Huarte J, Pitetti JL, Nef S, Vassalli JD. Dcp1-bodies in mouse oocytes. Mol Biol Cell. 2009; 20: 4951–4961. doi: 10.1091/mbc.E09-02-0123. pmid:19812249
|
[65] | Buchan JR, Muhlrad D, Parker R. P-bodies promote stress granule assembly in Saccharomyces cerevisiae. J Cell Biol. 2008; 183: 441–455. doi: 10.1083/jcb.200807043. pmid:18981231
|
[66] | Goldstein AL, McCusker JH. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast. 1999; 15: 1541–1553. pmid:10514571 doi: 10.1002/(sici)1097-0061(199910)15:14<1541::aid-yea476>3.3.co;2-b
|
[67] | Gietz RD, Woods RA. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 2002; 350: 87–96. pmid:12073338 doi: 10.1016/s0076-6879(02)50957-5
|
[68] | Tomar P, Bhatia A, Ramdas S, Diao L, Bhanot G, Sinha H. Sporulation genes associated with sporulation efficiency in natural isolates of yeast. PLoS ONE. 2013; 8: e69765. doi: 10.1371/journal.pone.0069765. pmid:23874994
|
[69] | Lardenois A, Liu Y, Walther T, Chalmel F, Evrard B, Granovskaia M, et al. Execution of the meiotic noncoding RNA expression program and the onset of gametogenesis in yeast require the conserved exosome subunit Rrp6. Proc Natl Acad Sci U S A. 2011; 108: 1058–1063. doi: 10.1073/pnas.1016459108. pmid:21149693
|
[70] | Eastwood MD, Cheung SWT, Lee KY, Moffat J, Meneghini MD Developmentally programmed nuclear destruction during yeast gametogenesis. Dev Cell. 2012; 23: 35–44. doi: 10.1016/j.devcel.2012.05.005. pmid:22727375
|
[71] | Bellí G, Garí E, Aldea M, Herrero E. Functional analysis of yeast essential genes using a promoter-substitution cassette and the tetracycline-regulatable dual expression system. Yeast. 1998; 14: 1127–1138. pmid:9778798 doi: 10.1002/(sici)1097-0061(19980915)14:12<1127::aid-yea300>3.3.co;2-r
|
[72] | Xu Z, Wei W, Gagneur J, Clauder-Münster S, Smolik M, Huber W, et al. Antisense expression increases gene expression variability and locus interdependency. Mol Syst Biol. 2011; 7: 1–10. doi: 10.1038/msb.2011.1
|
[73] | Huber W, von Heydebreck A, Sültmann H, Poustka A, Vingron M. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics. 2002; 18 Suppl 1: S96–S104. pmid:12169536 doi: 10.1093/bioinformatics/18.suppl_1.s96
|
[74] | Loader C. Locfit: Local regression, likelihood and density estimation. R package version 1.5. 2007.
|
[75] | Leek JT, Monsen E, Dabney AR, Storey JD. EDGE: extraction and analysis of differential gene expression. Bioinformatics. 2006; 22: 507–508. pmid:16357033 doi: 10.1093/bioinformatics/btk005
|
[76] | Teixeira MC, Monteiro PT, Guerreiro JF, Gon?alves JP, Mira NP, dos Santos SC, et al. The YEASTRACT database: an upgraded information system for the analysis of gene and genomic transcription regulation in Saccharomyces cerevisiae. Nucleic Acids Res. 2014; 42: D161–D166. doi: 10.1093/nar/gkt1015. pmid:24170807
|
[77] | Magni P, Ferrazzi F, Sacchi L, Bellazzi R. TimeClust: a clustering tool for gene expression time series. Bioinformatics. 2008; 24: 430–432. pmid:18065427 doi: 10.1093/bioinformatics/btm605
|