全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2015 

Multiple In Vivo Biological Processes Are Mediated by Functionally Redundant Activities of Drosophila mir-279 and mir-996

DOI: 10.1371/journal.pgen.1005245

Full-Text   Cite this paper   Add to My Lib

Abstract:

While most miRNA knockouts exhibit only subtle defects, a handful of miRNAs are profoundly required for development or physiology. A particularly compelling locus is Drosophila mir-279, which was reported as essential to restrict the emergence of CO2-sensing neurons, to maintain circadian rhythm, and to regulate ovarian border cells. The mir-996 locus is located near mir-279 and bears a similar seed, but they otherwise have distinct, conserved, non-seed sequences, suggesting their evolutionary maintenance for separate functions. We generated single and double deletion mutants of the mir-279 and mir-996 hairpins, and cursory analysis suggested that miR-996 was dispensable. However, discrepancies in the strength of individual mir-279 deletion alleles led us to uncover that all extant mir-279 mutants are deficient for mature miR-996, even though they retain its genomic locus. We therefore engineered a panel of genomic rescue transgenes into the double deletion background, allowing a pure assessment of miR-279 and miR-996 requirements. Surprisingly, detailed analyses of viability, olfactory neuron specification, and circadian rhythm indicate that miR-279 is completely dispensable. Instead, an endogenous supply of either mir-279 or mir-996 suffices for normal development and behavior. Sensor tests of nine key miR-279/996 targets showed their similar regulatory capacities, although transgenic gain-of-function experiments indicate partially distinct activities of these miRNAs that may underlie that co-maintenance in genomes. Altogether, we elucidate the unexpected genetics of this critical miRNA operon, and provide a foundation for their further study. More importantly, these studies demonstrate that multiple, vital, loss-of-function phenotypes can be rescued by endogenous expression of divergent seed family members, highlighting the importance of this miRNA region for in vivo function.

References

[1]  Yang JS, Lai EC (2011) Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Molecular cell 43: 892–903. doi: 10.1016/j.molcel.2011.07.024. pmid:21925378
[2]  Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic acids research 39: D152–157. doi: 10.1093/nar/gkq1027. pmid:21037258
[3]  Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233. doi: 10.1016/j.cell.2009.01.002. pmid:19167326
[4]  Sun K, Lai EC (2013) Adult-specific functions of animal microRNAs. Nature reviews Genetics 14: 535–548. doi: 10.1038/nrg3471. pmid:23817310
[5]  Mendell JT, Olson EN (2012) MicroRNAs in stress signaling and human disease. Cell 148: 1172–1187. doi: 10.1016/j.cell.2012.02.005. pmid:22424228
[6]  Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843–854. pmid:8252621 doi: 10.1016/0092-8674(93)90529-y
[7]  Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75: 855–862. pmid:8252622 doi: 10.1016/0092-8674(93)90530-4
[8]  Reinhart BJ, Slack F, Basson M, Pasquinelli A, Bettinger J, et al. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403: 901–906. pmid:10706289
[9]  Lai EC (2002) microRNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation. Nature genetics 30: 363–364. pmid:11896390 doi: 10.1038/ng865
[10]  Lai EC, Burks C, Posakony JW (1998) The K box, a conserved 3' UTR sequence motif, negatively regulates accumulation of Enhancer of split Complex transcripts. Development 125: 4077–4088. pmid:9735368
[11]  Lai EC, Posakony JW (1997) The Bearded box, a novel 3' UTR sequence motif, mediates negative post-transcriptional regulation of Bearded and Enhancer of split Complex gene expression. Development 124: 4847–4856. pmid:9428421
[12]  Miska EA, Alvarez-Saavedra E, Abbott AL, Lau NC, Hellman AB, et al. (2007) Most Caenorhabditis elegans microRNAs Are Individually Not Essential for Development or Viability. PLoS genetics 3: e215. pmid:18085825 doi: 10.1371/journal.pgen.0030215.eor
[13]  Smibert P, Lai EC (2008) Lessons from microRNA mutants in worms, flies and mice. Cell cycle 7: 2500–2508. pmid:18719388 doi: 10.4161/cc.7.16.6454
[14]  Baek D, Villen J, Shin C, Camargo FD, Gygi SP, et al. (2008) The impact of microRNAs on protein output. Nature 455: 64–71. doi: 10.1038/nature07242. pmid:18668037
[15]  Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, et al. (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455: 58–63. doi: 10.1038/nature07228. pmid:18668040
[16]  Ebert MS, Sharp PA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149: 515–524. doi: 10.1016/j.cell.2012.04.005. pmid:22541426
[17]  Lai EC, Tomancak P, Williams RW, Rubin GM (2003) Computational identification of Drosophila microRNA genes. Genome biology 4: R42.41–R42.20. doi: 10.1186/gb-2003-4-7-r42
[18]  Cayirlioglu P, Kadow IG, Zhan X, Okamura K, Suh GS, et al. (2008) Hybrid neurons in a microRNA mutant are putative evolutionary intermediates in insect CO2 sensory systems. Science 319: 1256–1260. doi: 10.1126/science.1149483. pmid:18309086
[19]  Chalfie M, Horvitz HR, Sulston JE (1981) Mutations that lead to reiterations in the cell lineages of C. elegans. Cell 24: 59–69. pmid:7237544 doi: 10.1016/0092-8674(81)90501-8
[20]  Johnston RJ, Hobert O (2003) A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426: 845–849. pmid:14685240 doi: 10.1038/nature02255
[21]  Lewis MA, Quint E, Glazier AM, Fuchs H, De Angelis MH, et al. (2009) An ENU-induced mutation of miR-96 associated with progressive hearing loss in mice. Nature genetics 41: 614–618. doi: 10.1038/ng.369. pmid:19363478
[22]  Mencia A, Modamio-Hoybjor S, Redshaw N, Morin M, Mayo-Merino F, et al. (2009) Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nature genetics 41: 609–613. doi: 10.1038/ng.355. pmid:19363479
[23]  Hartl M, Loschek LF, Stephan D, Siju KP, Knappmeyer C, et al. (2011) A New Prospero and microRNA-279 Pathway Restricts CO2 Receptor Neuron Formation. The Journal of neuroscience: the official journal of the Society for Neuroscience 31: 15660–15673. doi: 10.1523/JNEUROSCI.2592-11.2011. pmid:22049409
[24]  Luo W, Sehgal A (2012) Regulation of Circadian Behavioral Output via a MicroRNA-JAK/STAT Circuit. Cell 148: 765–779. doi: 10.1016/j.cell.2011.12.024. pmid:22305007
[25]  Yoon WH, Meinhardt H, Montell DJ (2011) miRNA-mediated feedback inhibition of JAK/STAT morphogen signalling establishes a cell fate threshold. Nature cell biology 13: 1062–1069. doi: 10.1038/ncb2316. pmid:21857668
[26]  Ruby JG, Stark A, Johnston WK, Kellis M, Bartel DP, et al. (2007) Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome research 17: 1850–1864. pmid:17989254 doi: 10.1101/gr.6597907
[27]  Stark A, Kheradpour P, Parts L, Brennecke J, Hodges E, et al. (2007) Systematic discovery and characterization of fly microRNAs using 12 Drosophila genomes. Genome research 17: 1865–1879. pmid:17989255 doi: 10.1101/gr.6593807
[28]  Mohammed J, Siepel A, Lai EC (2014) Diverse modes of evolutionary emergence and flux of conserved microRNA clusters. RNA in press. doi: 10.1261/rna.046805.114
[29]  Bushati N, Stark A, Brennecke J, Cohen SM (2008) Temporal Reciprocity of miRNAs and Their Targets during the Maternal-to-Zygotic Transition in Drosophila. Curr Biol 18: 501–506. doi: 10.1016/j.cub.2008.02.081. pmid:18394895
[30]  Aboobaker AA, Tomancak P, Patel N, Rubin GM, Lai EC (2005) Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proceedings of the National Academy of Sciences of the United States of America 102: 18017–18022. pmid:16330759 doi: 10.1073/pnas.0508823102
[31]  Wen J, Mohammed J, Bortolamiol-Becet D, Tsai H, Robine N, et al. (2014) Diversity of miRNAs, siRNAs and piRNAs across 25 Drosophila cell lines. Genome research 24: 1236–1250. doi: 10.1101/gr.161554.113. pmid:24985917
[32]  Brown JB, Boley N, Eisman R, May G, Stoiber M, et al. (2014) Diversity and dynamics of the Drosophila transcriptome. Nature 512: 393–399. pmid:24670639 doi: 10.1038/nature12962
[33]  Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, et al. (2011) The developmental transcriptome of Drosophila melanogaster. Nature 471: 473–479. doi: 10.1038/nature09715. pmid:21179090
[34]  Manak JR, Dike S, Sementchenko V, Kapranov P, Biemar F, et al. (2006) Biological function of unannotated transcription during the early development of Drosophila melanogaster. Nature genetics 38: 1151–1158. pmid:16951679 doi: 10.1038/ng1875
[35]  Linsley PS, Schelter J, Burchard J, Kibukawa M, Martin MM, et al. (2007) Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Molecular and cellular biology 27: 2240–2252. pmid:17242205 doi: 10.1128/mcb.02005-06
[36]  Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, et al. (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433: 769–773. pmid:15685193 doi: 10.1038/nature03315
[37]  Lai EC (2015) Two decades of miRNA biology: lessons and challenges. RNA 21: 675–677. doi: 10.1261/rna.051193.115. pmid:25780186
[38]  Chen YW, Song S, Weng R, Verma P, Kugler JM, et al. (2014) Systematic Study of Drosophila MicroRNA Functions Using a Collection of Targeted Knockout Mutations. Developmental cell 31: 784–800. doi: 10.1016/j.devcel.2014.11.029. pmid:25535920
[39]  Alvarez-Saavedra E, Horvitz HR (2010) Many families of C. elegans microRNAs are not essential for development or viability. Curr Biol 20: 367–373. doi: 10.1016/j.cub.2009.12.051. pmid:20096582
[40]  Abbott AL, Alvarez-Saavedra E, Miska EA, Lau NC, Bartel DP, et al. (2005) The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Developmental cell 9: 403–414. pmid:16139228 doi: 10.1016/j.devcel.2005.07.009
[41]  Brenner JL, Jasiewicz KL, Fahley AF, Kemp BJ, Abbott AL (2010) Loss of individual microRNAs causes mutant phenotypes in sensitized genetic backgrounds in C. elegans. Curr Biol 20: 1321–1325. doi: 10.1016/j.cub.2010.05.062. pmid:20579881
[42]  Smibert P, Lai EC (2010) A view from Drosophila: multiple biological functions for individual microRNAs. Seminars in cell & developmental biology 21: 745–753. doi: 10.1016/j.semcdb.2010.03.001
[43]  Small EM, Olson EN (2011) Pervasive roles of microRNAs in cardiovascular biology. Nature 469: 336–342. doi: 10.1038/nature09783. pmid:21248840
[44]  Li X, Cassidy JJ, Reinke CA, Fischboeck S, Carthew RW (2009) A microRNA imparts robustness against environmental fluctuation during development. Cell 137: 273–282. doi: 10.1016/j.cell.2009.01.058. pmid:19379693
[45]  Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294: 853–858. pmid:11679670 doi: 10.1126/science.1064921
[46]  Doench JG, Sharp PA (2004) Specificity of microRNA target selection in translational repression. Genes & development 18: 504–511. doi: 10.1101/gad.1184404
[47]  Brennecke J, Stark A, Russell RB, Cohen SM (2005) Principles of MicroRNA-Target Recognition. PLoS biology 3: e85. pmid:15723116 doi: 10.1371/journal.pbio.0030085
[48]  Lai EC, Tam B, Rubin GM (2005) Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes & development 19: 1067–1080. doi: 10.1101/gad.1291905
[49]  Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115: 787–798. pmid:14697198 doi: 10.1016/s0092-8674(03)01018-3
[50]  Stark A, Brennecke J, Russell RB, Cohen SM (2003) Identification of Drosophila MicroRNA Targets. PLoS biology 1: E60. pmid:14691535 doi: 10.1371/journal.pbio.0000060
[51]  Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, et al. (2005) Combinatorial microRNA target predictions. Nature genetics 37: 495–500. pmid:15806104 doi: 10.1038/ng1536
[52]  Vella MC, Choi EY, Lin SY, Reinert K, Slack FJ (2004) The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3'UTR. Genes & development 18: 132–137. doi: 10.1101/gad.1165404
[53]  Lal A, Navarro F, Maher CA, Maliszewski LE, Yan N, et al. (2009) miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to "seedless" 3'UTR microRNA recognition elements. Molecular cell 35: 610–625. doi: 10.1016/j.molcel.2009.08.020. pmid:19748357
[54]  Shin C, Nam JW, Farh KK, Chiang HR, Shkumatava A, et al. (2010) Expanding the MicroRNA Targeting Code: Functional Sites with Centered Pairing. Molecular cell 38: 789–802. doi: 10.1016/j.molcel.2010.06.005. pmid:20620952
[55]  Sarin S, O'Meara MM, Flowers EB, Antonio C, Poole RJ, et al. (2007) Genetic screens for Caenorhabditis elegans mutants defective in left/right asymmetric neuronal fate specification. Genetics 176: 2109–2130. pmid:17717195 doi: 10.1534/genetics.107.075648
[56]  Nairz K, Rottig C, Rintelen F, Zdobnov E, Moser M, et al. (2006) Overgrowth caused by misexpression of a microRNA with dispensable wild-type function. Developmental biology 291: 314–324. pmid:16443211 doi: 10.1016/j.ydbio.2005.11.047
[57]  Bassett AR, Azzam G, Wheatley L, Tibbit C, Rajakumar T, et al. (2014) Understanding functional miRNA-target interactions in vivo by site-specific genome engineering. Nature communications 5: 4640. doi: 10.1038/ncomms5640. pmid:25135198
[58]  Ecsedi M, Rausch M, Grosshans H (2015) The let-7 microRNA Directs Vulval Development through a Single Target. Developmental cell 32: 335–344. doi: 10.1016/j.devcel.2014.12.018. pmid:25669883
[59]  Pfeiffer BD, Jenett A, Hammonds AS, Ngo TT, Misra S, et al. (2008) Tools for neuroanatomy and neurogenetics in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 105: 9715–9720. doi: 10.1073/pnas.0803697105. pmid:18621688
[60]  Venken KJ, He Y, Hoskins RA, Bellen HJ (2006) P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 314: 1747–1751. pmid:17138868 doi: 10.1126/science.1134426
[61]  Bejarano F, Bortolamiol-Becet D, Dai Q, Sun K, Saj A, et al. (2012) A genome-wide transgenic resource for conditional expression of Drosophila microRNAs. Development 139: 2821–2831. doi: 10.1242/dev.079939. pmid:22745315
[62]  Blau J, Young MW (1999) Cycling vrille expression is required for a functional Drosophila clock. Cell 99: 661–671. pmid:10612401 doi: 10.1016/s0092-8674(00)81554-8
[63]  Jones WD, Cayirlioglu P, Kadow IG, Vosshall LB (2007) Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 445: 86–90. pmid:17167414 doi: 10.1038/nature05466
[64]  Pfeiffenberger C, Lear BC, Keegan KP, Allada R (2010) Processing circadian data collected from the Drosophila Activity Monitoring (DAM) System. Cold Spring Harbor protocols 2010: pdb prot5519. doi: 10.1101/pdb.prot5519. pmid:21041392
[65]  Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130: 89–100. pmid:17599402 doi: 10.1016/j.cell.2007.06.028

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133