[1] | French S (1992) Consequences of replication fork movement through transcription units in vivo. Science 258: 1362–1365. pmid:1455232 doi: 10.1126/science.1455232
|
[2] | Mirkin EV, Mirkin SM (2005) Mechanisms of transcription-replication collisions in bacteria. Mol Cell Biol 25: 888–895. pmid:15657418 doi: 10.1128/mcb.25.3.888-895.2005
|
[3] | Wang JD, Berkmen MB, Grossman AD (2007) Genome-wide coorientation of replication and transcription reduces adverse effects on replication in Bacillus subtilis. Proc Natl Acad Sci U S A 104: 5608–5613. pmid:17372224 doi: 10.1073/pnas.0608999104
|
[4] | Rudolph CJ, Dhillon P, Moore T, Lloyd RG (2007) Avoiding and resolving conflicts between DNA replication and transcription. DNA Repair (Amst) 6: 981–993. pmid:17400034 doi: 10.1016/j.dnarep.2007.02.017
|
[5] | Merrikh H, Machon C, Grainger WH, Grossman AD, Soultanas P (2011) Co-directional replication-transcription conflicts lead to replication restart. Nature 470: 554–557. doi: 10.1038/nature09758. pmid:21350489
|
[6] | Dutta D, Shatalin K, Epshtein V, Gottesman ME, Nudler E (2011) Linking RNA polymerase backtracking to genome instability in E. coli. Cell 146: 533–543. doi: 10.1016/j.cell.2011.07.034. pmid:21854980
|
[7] | Rocha EP, Danchin A (2003) Gene essentiality determines chromosome organisation in bacteria. Nucleic Acids Res 31: 6570–6577. pmid:14602916 doi: 10.1093/nar/gkg859
|
[8] | Rocha EP, Danchin A (2003) Essentiality, not expressiveness, drives gene-strand bias in bacteria. Nat Genet 34: 377–378. pmid:12847524 doi: 10.1038/ng1209
|
[9] | Rocha EP (2004) The replication-related organization of bacterial genomes. Microbiology 150: 1609–1627. pmid:15184548 doi: 10.1099/mic.0.26974-0
|
[10] | Rocha EP, Touchon M, Feil EJ (2006) Similar compositional biases are caused by very different mutational effects. Genome Res 16: 1537–1547. pmid:17068325 doi: 10.1101/gr.5525106
|
[11] | Brewer BJ (1988) When polymerases collide: replication and the transcriptional organization of the E. coli chromosome. Cell 53: 679–686. pmid:3286014 doi: 10.1016/0092-8674(88)90086-4
|
[12] | Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, et al. (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249–256. pmid:9384377
|
[13] | McLean MJ, Wolfe KH, Devine KM (1998) Base composition skews, replication orientation, and gene orientation in 12 prokaryote genomes. J Mol Evol 47: 691–696. pmid:9847411 doi: 10.1007/pl00006428
|
[14] | Guy L, Roten CA (2004) Genometric analyses of the organization of circular chromosomes: a universal pressure determines the direction of ribosomal RNA genes transcription relative to chromosome replication. Gene 340: 45–52. pmid:15556293 doi: 10.1016/j.gene.2004.06.056
|
[15] | Price MN, Alm EJ, Arkin AP (2005) Interruptions in gene expression drive highly expressed operons to the leading strand of DNA replication. Nucleic Acids Res 33: 3224–3234. pmid:15942025 doi: 10.1093/nar/gki638
|
[16] | Merrikh H, Zhang Y, Grossman AD, Wang JD (2012) Replication-transcription conflicts in bacteria. Nat Rev Microbiol 10: 449–458. doi: 10.1038/nrmicro2800. pmid:22669220
|
[17] | Boubakri H, de Septenville AL, Viguera E, Michel B (2010) The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo. EMBO J 29: 145–157. doi: 10.1038/emboj.2009.308. pmid:19851282
|
[18] | Baharoglu Z, Lestini R, Duigou S, Michel B (2010) RNA polymerase mutations that facilitate replication progression in the rep uvrD recF mutant lacking two accessory replicative helicases. Mol Microbiol 77: 324–336. doi: 10.1111/j.1365-2958.2010.07208.x. pmid:20497334
|
[19] | Condon C, Putzer H (2002) The phylogenetic distribution of bacterial ribonucleases. Nucleic Acids Res 30: 5339–5346. pmid:12490701 doi: 10.1093/nar/gkf691
|
[20] | Petit MA, Dervyn E, Rose M, Entian KD, McGovern S, et al. (1998) PcrA is an essential DNA helicase of Bacillus subtilis fulfilling functions both in repair and rolling-circle replication. Mol Microbiol 29: 261–273. pmid:9701819 doi: 10.1046/j.1365-2958.1998.00927.x
|
[21] | Petit MA, Ehrlich D (2002) Essential bacterial helicases that counteract the toxicity of recombination proteins. EMBO J 21: 3137–3147. pmid:12065426 doi: 10.1093/emboj/cdf317
|
[22] | Cox MM (1999) Recombinational DNA repair in bacteria and the RecA protein. Prog Nucleic Acid Res Mol Biol 63: 311–366. pmid:10506835 doi: 10.1016/s0079-6603(08)60726-6
|
[23] | Lenhart JS, Schroeder JW, Walsh BW, Simmons LA (2012) DNA repair and genome maintenance in Bacillus subtilis. Microbiol Mol Biol Rev 76: 530–564. doi: 10.1128/MMBR.05020-11. pmid:22933559
|
[24] | Anand SP, Zheng H, Bianco PR, Leuba SH, Khan SA (2007) DNA helicase activity of PcrA is not required for the displacement of RecA protein from DNA or inhibition of RecA-mediated strand exchange. J Bacteriol 189: 4502–4509. pmid:17449621 doi: 10.1128/jb.00376-07
|
[25] | Gwynn EJ, Smith AJ, Guy CP, Savery NJ, McGlynn P, et al. (2013) The conserved C-terminus of the PcrA/UvrD helicase interacts directly with RNA polymerase. PLoS One 8: e78141. doi: 10.1371/journal.pone.0078141. pmid:24147116
|
[26] | Noirot-Gros MF, Dervyn E, Wu LJ, Mervelet P, Errington J, et al. (2002) An expanded view of bacterial DNA replication. Proc Natl Acad Sci U S A 99: 8342–8347. pmid:12060778 doi: 10.1073/pnas.122040799
|
[27] | Epshtein V, Kamarthapu V, McGary K, Svetlov V, Ueberheide B, et al. (2014) UvrD facilitates DNA repair by pulling RNA polymerase backwards. Nature 505: 372–377. doi: 10.1038/nature12928. pmid:24402227
|
[28] | Park J, Myong S, Niedziela-Majka A, Lee KS, Yu J, et al. (2010) PcrA helicase dismantles RecA filaments by reeling in DNA in uniform steps. Cell 142: 544–555. doi: 10.1016/j.cell.2010.07.016. pmid:20723756
|
[29] | Fagerburg MV, Schauer GD, Thickman KR, Bianco PR, Khan SA, et al. (2012) PcrA-mediated disruption of RecA nucleoprotein filaments—essential role of the ATPase activity of RecA. Nucleic Acids Res 40: 8416–8424. pmid:22743269 doi: 10.1093/nar/gks641
|
[30] | Griffith KL, Grossman AD (2008) Inducible protein degradation in Bacillus subtilis using heterologous peptide tags and adaptor proteins to target substrates to the protease ClpXP. Mol Microbiol 70: 1012–1025. doi: 10.1111/j.1365-2958.2008.06467.x. pmid:18811726
|
[31] | Merrikh H, Grossman AD (2011) Control of the replication initiator DnaA by an anti-cooperativity factor. Mol Microbiol 82: 434–446. doi: 10.1111/j.1365-2958.2011.07821.x. pmid:21895792
|
[32] | Rahn-Lee L, Merrikh H, Grossman AD, Losick R (2011) The sporulation protein SirA inhibits the binding of DnaA to the origin of replication by contacting a patch of clustered amino acids. J Bacteriol 193: 1302–1307. doi: 10.1128/JB.01390-10. pmid:21239581
|
[33] | Smits WK, Merrikh H, Bonilla CY, Grossman AD (2011) Primosomal proteins DnaD and DnaB are recruited to chromosomal regions bound by DnaA in Bacillus subtilis. J Bacteriol 193: 640–648. doi: 10.1128/JB.01253-10. pmid:21097613
|
[34] | Million-Weaver S, Samadpour AN, Moreno-Habel DA, Nugent P, Brittnacher MJ, et al. (2015) An underlying mechanism for the increased mutagenesis of lagging-strand genes in Bacillus subtilis. Proc Natl Acad Sci U S A 112: E1096–1105. doi: 10.1073/pnas.1416651112. pmid:25713353
|
[35] | Waldminghaus T, Skarstad K (2010) ChIP on Chip: surprising results are often artifacts. BMC Genomics 11: 414. doi: 10.1186/1471-2164-11-414. pmid:20602746
|
[36] | Teytelman L, Thurtle DM, Rine J, van Oudenaarden A (2013) Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins. Proc Natl Acad Sci U S A 110: 18602–18607. doi: 10.1073/pnas.1316064110. pmid:24173036
|
[37] | Wright GE, Brown NC (1974) Synthesis of 6-(phenylhydrazino)uracils and their inhibition of a replication-specific deoxyribonucleic acid polymerase. J Med Chem 17: 1277–1282. pmid:4473549 doi: 10.1021/jm00258a009
|
[38] | Brewer BJ, Fangman WL (1987) The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51: 463–471. pmid:2822257 doi: 10.1016/0092-8674(87)90642-8
|
[39] | Harriott K (2012) The characterisation of the interaction between PcrA and RNA polymerase [University of Newcastle Research Higher Degree Thesis].
|
[40] | Bjornson KP, Wong I, Lohman TM (1996) ATP hydrolysis stimulates binding and release of single stranded DNA from alternating subunits of the dimeric E. coli Rep helicase: implications for ATP-driven helicase translocation. J Mol Biol 263: 411–422. pmid:8918597 doi: 10.1006/jmbi.1996.0585
|
[41] | Guy CP, Atkinson J, Gupta MK, Mahdi AA, Gwynn EJ, et al. (2009) Rep provides a second motor at the replisome to promote duplication of protein-bound DNA. Mol Cell 36: 654–666. doi: 10.1016/j.molcel.2009.11.009. pmid:19941825
|
[42] | Pomerantz RT, O'Donnell M (2010) Direct restart of a replication fork stalled by a head-on RNA polymerase. Science 327: 590–592. doi: 10.1126/science.1179595. pmid:20110508
|
[43] | Srivatsan A, Tehranchi A, MacAlpine DM, Wang JD (2010) Co-orientation of replication and transcription preserves genome integrity. PLoS Genet 6: e1000810. doi: 10.1371/journal.pgen.1000810. pmid:20090829
|
[44] | Esnault E, Valens M, Espeli O, Boccard F (2007) Chromosome structuring limits genome plasticity in Escherichia coli. PLoS Genet 3: e226. pmid:18085828 doi: 10.1371/journal.pgen.0030226
|
[45] | Argueso JL, Westmoreland J, Mieczkowski PA, Gawel M, Petes TD, et al. (2008) Double-strand breaks associated with repetitive DNA can reshape the genome. Proc Natl Acad Sci U S A 105: 11845–11850. doi: 10.1073/pnas.0804529105. pmid:18701715
|
[46] | Friedman KL, Brewer BJ (1995) Analysis of replication intermediates by two-dimensional agarose gel electrophoresis. Methods Enzymol 262: 613–627. pmid:8594382 doi: 10.1016/0076-6879(95)62048-6
|
[47] | Bose B, Grossman AD (2011) Regulation of horizontal gene transfer in Bacillus subtilis by activation of a conserved site-specific protease. J Bacteriol 193: 22–29. doi: 10.1128/JB.01143-10. pmid:21036995
|
[48] | Smits WK, Goranov AI, Grossman AD (2010) Ordered association of helicase loader proteins with the Bacillus subtilis origin of replication in vivo. Mol Microbiol 75: 452–461. doi: 10.1111/j.1365-2958.2009.06999.x. pmid:19968790
|
[49] | Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359. doi: 10.1038/nmeth.1923. pmid:22388286
|
[50] | Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079. doi: 10.1093/bioinformatics/btp352. pmid:19505943
|
[51] | Lee CA, Babic A, Grossman AD (2010) Autonomous plasmid-like replication of a conjugative transposon. Mol Microbiol 75: 268–279. doi: 10.1111/j.1365-2958.2009.06985.x. pmid:19943900
|
[52] | Doherty GP, Fogg MJ, Wilkinson AJ, Lewis PJ (2010) Small subunits of RNA polymerase: localization, levels and implications for core enzyme composition. Microbiology 156: 3532–3543. doi: 10.1099/mic.0.041566-0. pmid:20724389
|