[1] | Seale P, Lazar MA (2009) Brown fat in humans: turning up the heat on obesity. Diabetes 58: 1482–1484. doi: 10.2337/db09-0622. pmid:19564460
|
[2] | Caudwell P, Gibbons C, Hopkins M, Naslund E, King N, et al. (2011) The influence of physical activity on appetite control: an experimental system to understand the relationship between exercise-induced energy expenditure and energy intake. Proc Nutr Soc 70: 171–180. doi: 10.1017/S0029665110004751. pmid:21226975
|
[3] | Kennedy GC (1953) The role of depot fat in the hypothalamic control of food intake in the rat. Proc R Soc Lond B Biol Sci 140: 578–596. pmid:13027283 doi: 10.1098/rspb.1953.0009
|
[4] | Cannon B, Nedergaard J (2009) Thermogenesis challenges the adipostat hypothesis for body-weight control. Proc Nutr Soc 68: 401–407. doi: 10.1017/S0029665109990255. pmid:19775494
|
[5] | Arch JR (2008) The discovery of drugs for obesity, the metabolic effects of leptin and variable receptor pharmacology: perspectives from beta3-adrenoceptor agonists. Naunyn Schmiedebergs Arch Pharmacol 378: 225–240. doi: 10.1007/s00210-008-0271-1. pmid:18612674
|
[6] | Melnyk A, Himms-Hagen J (1998) Temperature-dependent feeding: lack of role for leptin and defect in brown adipose tissue-ablated obese mice. Am J Physiol 274: R1131–1135. pmid:9575979
|
[7] | Perello M, Stuart RC, Vaslet CA, Nillni EA (2007) Cold exposure increases the biosynthesis and proteolytic processing of prothyrotropin-releasing hormone in the hypothalamic paraventricular nucleus via beta-adrenoreceptors. Endocrinology 148: 4952–4964. pmid:17584968 doi: 10.1210/en.2007-0522
|
[8] | Park JJ, Lee HK, Shin MW, Kim SJ, Noh SY, et al. (2007) Short-term cold exposure may cause a local decrease of neuropeptide Y in the rat hypothalamus. Mol Cells 23: 88–93. pmid:17464216
|
[9] | Cabral A, Valdivia S, Reynaldo M, Cyr NE, Nillni EA, et al. (2012) Short-term cold exposure activates TRH neurons exclusively in the hypothalamic paraventricular nucleus and raphe pallidus. Neurosci Lett 518: 86–91. doi: 10.1016/j.neulet.2012.04.059. pmid:22580206
|
[10] | Pereira-da-Silva M, Torsoni MA, Nourani HV, Augusto VD, Souza CT, et al. (2003) Hypothalamic melanin-concentrating hormone is induced by cold exposure and participates in the control of energy expenditure in rats. Endocrinology 144: 4831–4840. pmid:12960043 doi: 10.1210/en.2003-0243
|
[11] | Sanchez E, Fekete C, Lechan RM, Joseph-Bravo P (2007) Cocaine- and amphetamine-regulated transcript (CART) expression is differentially regulated in the hypothalamic paraventricular nucleus of lactating rats exposed to suckling or cold stimulation. Brain Res 1132: 120–128. pmid:17174283 doi: 10.1016/j.brainres.2006.11.020
|
[12] | McCarthy HD, Kilpatrick AP, Trayhurn P, Williams G (1993) Widespread increases in regional hypothalamic neuropeptide Y levels in acute cold-exposed rats. Neuroscience 54: 127–132. pmid:8515838 doi: 10.1016/0306-4522(93)90388-v
|
[13] | Egawa M, Yoshimatsu H, Bray GA (1991) Neuropeptide Y suppresses sympathetic activity to interscapular brown adipose tissue in rats. Am J Physiol 260: R328–334. pmid:1996720 doi: 10.1016/0306-4522(90)90181-3
|
[14] | Small CJ, Liu YL, Stanley SA, Connoley IP, Kennedy A, et al. (2003) Chronic CNS administration of Agouti-related protein (Agrp) reduces energy expenditure. Int J Obes Relat Metab Disord 27: 530–533. pmid:12664087 doi: 10.1038/sj.ijo.0802253
|
[15] | Chao PT, Yang L, Aja S, Moran TH, Bi S (2011) Knockdown of NPY expression in the dorsomedial hypothalamus promotes development of brown adipocytes and prevents diet-induced obesity. Cell Metab 13: 573–583. doi: 10.1016/j.cmet.2011.02.019. pmid:21531339
|
[16] | Dimitrov EL, Kim YY, Usdin TB (2011) Regulation of hypothalamic signaling by tuberoinfundibular peptide of 39 residues is critical for the response to cold: a novel peptidergic mechanism of thermoregulation. J Neurosci 31: 18166–18179. doi: 10.1523/JNEUROSCI.2619-11.2011. pmid:22159128
|
[17] | Nillni EA, Xie W, Mulcahy L, Sanchez VC, Wetsel WC (2002) Deficiencies in pro-thyrotropin-releasing hormone processing and abnormalities in thermoregulation in Cpefat/fat mice. J Biol Chem 277: 48587–48595. pmid:12270926 doi: 10.1074/jbc.m206702200
|
[18] | Koza RA, Nikonova L, Hogan J, Rim JS, Mendoza T, et al. (2006) Changes in gene expression foreshadow diet-induced obesity in genetically identical mice. PLoS Genet 2: e81. pmid:16733553 doi: 10.1371/journal.pgen.0020081
|
[19] | Ukropec J, Anunciado RV, Ravussin Y, Kozak LP (2006) Leptin is required for uncoupling protein-1-independent thermogenesis during cold stress. Endocrinology 147: 2468–2480. pmid:16469807 doi: 10.1210/en.2005-1216
|
[20] | Coleman DL (1982) Thermogenesis in diabetes-obesity syndromes in mutant mice. Diabetologia 22: 205–211. pmid:7075918 doi: 10.1007/bf00283754
|
[21] | Trayhurn P, James WP (1978) Thermoregulation and non-shivering thermogenesis in the genetically obese (ob/ob) mouse. Pflugers Arch 373: 189–193. pmid:565045 doi: 10.1007/bf00584859
|
[22] | Enerback S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, et al. (1997) Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387: 90–94. pmid:9169872 doi: 10.1038/387090a0
|
[23] | Liu X, Rossmeisl M, McClaine J, Riachi M, Harper ME, et al. (2003) Paradoxical resistance to diet-induced obesity in UCP1-deficient mice. J Clin Invest 111: 399–407. pmid:12569166 doi: 10.1172/jci200315737
|
[24] | Golozoubova V, Hohtola E, Matthias A, Jacobsson A, Cannon B, et al. (2001) Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold. FASEB J 15: 2048–2050. pmid:11511509 doi: 10.1096/fj.00-0536fje
|
[25] | Ukropec J, Anunciado RP, Ravussin Y, Hulver MW, Kozak LP (2006) UCP1-independent thermogenesis in white adipose tissue of cold-acclimated Ucp1-/- mice. J Biol Chem 281: 31894–31908. pmid:16914547 doi: 10.1074/jbc.m606114200
|
[26] | Johnson MS, Speakman JR (2001) Limits to sustained energy intake. V. Effect of cold-exposure during lactation in Mus musculus. J Exp Biol 204: 1967–1977. pmid:11441038
|
[27] | Melzer K, Kayser B, Saris WH, Pichard C (2005) Effects of physical activity on food intake. Clin Nutr 24: 885–895. pmid:16039759 doi: 10.1016/j.clnu.2005.06.003
|
[28] | Brobeck JR (1948) Food intake as a mechanism of temperature regulation. Yale J Biol Med 20: 545–552. pmid:18872321
|
[29] | Leibel RL, Rosenbaum M, Hirsch J (1995) Changes in energy expenditure resulting from altered body weight. N Engl J Med 332: 621–628. pmid:7632212 doi: 10.1056/nejm199503093321001
|
[30] | Bukowiecki LJ (1989) Energy balance and diabetes. The effects of cold exposure, exercise training, and diet composition on glucose tolerance and glucose metabolism in rat peripheral tissues. Can J Physiol Pharmacol 67: 382–393. pmid:2667731 doi: 10.1139/y89-062
|
[31] | Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Muller C, et al. (2002) Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415: 339–343. pmid:11797013 doi: 10.1038/415339a
|
[32] | Guerra C, Koza RA, Walsh K, Kurtz DM, Wood PA, et al. (1998) Abnormal nonshivering thermogenesis in mice with inherited defects of fatty acid oxidation. J Clin Invest 102: 1724–1731. pmid:9802886 doi: 10.1172/jci4532
|
[33] | Harris RB, Mitchell TD, Kelso EW, Flatt WP (2007) Changes in environmental temperature influence leptin responsiveness in low- and high-fat-fed mice. Am J Physiol Regul Integr Comp Physiol 293: R106–115. pmid:17442784 doi: 10.1152/ajpregu.00848.2006
|
[34] | Bing C, Frankish HM, Pickavance L, Wang Q, Hopkins DF, et al. (1998) Hyperphagia in cold-exposed rats is accompanied by decreased plasma leptin but unchanged hypothalamic NPY. Am J Physiol 274: R62–68. pmid:9458899
|
[35] | Zhao ZJ (2011) Serum leptin, energy budget, and thermogenesis in striped hamsters exposed to consecutive decreases in ambient temperatures. Physiol Biochem Zool 84: 560–572. doi: 10.1086/662553. pmid:22030849
|
[36] | Krol E, Speakman JR (2003) Limits to sustained energy intake. VI. Energetics of lactation in laboratory mice at thermoneutrality. J Exp Biol 206: 4255–4266. pmid:14581596 doi: 10.1242/jeb.00674
|
[37] | Speakman JR, Krol E (2011) Limits to sustained energy intake. XIII. Recent progress and future perspectives. J Exp Biol 214: 230–241. doi: 10.1242/jeb.048603. pmid:21177943
|
[38] | El-Haschimi K, Pierroz DD, Hileman SM, Bjorbaek C, Flier JS (2000) Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J Clin Invest 105: 1827–1832. pmid:10862798 doi: 10.1172/jci9842
|
[39] | Yoneshiro T, Aita S, Matsushita M, Okamatsu-Ogura Y, Kameya T, et al. (2011) Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans. Obesity (Silver Spring) 19: 1755–1760. doi: 10.1038/oby.2011.125. pmid:21566561
|
[40] | Cypess AM, Lehman S, Williams G, Tal I, Rodman D, et al. (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360: 1509–1517. doi: 10.1056/NEJMoa0810780. pmid:19357406
|
[41] | Hofmann WE, Liu X, Bearden CM, Harper ME, Kozak LP (2001) Effects of genetic background on thermoregulation and fatty acid-induced uncoupling of mitochondria in UCP1-deficient mice. J Biol Chem 276: 12460–12465. pmid:11279075 doi: 10.1074/jbc.m100466200
|
[42] | Liu Q, Guan XM, Martin WJ, McDonald TP, Clements MK, et al. (2001) Identification and characterization of novel mammalian neuropeptide FF-like peptides that attenuate morphine-induced antinociception. J Biol Chem 276: 36961–36969. pmid:11481330 doi: 10.1074/jbc.m105308200
|
[43] | Hinuma S, Shintani Y, Fukusumi S, Iijima N, Matsumoto Y, et al. (2000) New neuropeptides containing carboxy-terminal RFamide and their receptor in mammals. Nat Cell Biol 2: 703–708. pmid:11025660
|
[44] | Johnson MA, Tsutsui K, Fraley GS (2007) Rat RFamide-related peptide-3 stimulates GH secretion, inhibits LH secretion, and has variable effects on sex behavior in the adult male rat. Horm Behav 51: 171–180. pmid:17113584 doi: 10.1016/j.yhbeh.2006.09.009
|
[45] | Yang HY, Fratta W, Majane EA, Costa E (1985) Isolation, sequencing, synthesis, and pharmacological characterization of two brain neuropeptides that modulate the action of morphine. Proc Natl Acad Sci U S A 82: 7757–7761. pmid:3865193 doi: 10.1073/pnas.82.22.7757
|
[46] | Jhamandas JH, Goncharuk V (2013) Role of neuropeptide FF in central cardiovascular and neuroendocrine regulation. Front Endocrinol (Lausanne) 4: 8. doi: 10.3389/fendo.2013.00008
|
[47] | Tachibana T, Sato M, Takahashi H, Ukena K, Tsutsui K, et al. (2005) Gonadotropin-inhibiting hormone stimulates feeding behavior in chicks. Brain Res 1050: 94–100. pmid:15979587 doi: 10.1016/j.brainres.2005.05.035
|
[48] | Cline MA, Bowden CN, Calchary WA, Layne JE (2008) Short-term anorexigenic effects of central neuropeptide VF are associated with hypothalamic changes in chicks. J Neuroendocrinol 20: 971–977. doi: 10.1111/j.1365-2826.2008.01749.x. pmid:18540998
|
[49] | Chartrel N, Dujardin C, Anouar Y, Leprince J, Decker A, et al. (2003) Identification of 26RFa, a hypothalamic neuropeptide of the RFamide peptide family with orexigenic activity. Proc Natl Acad Sci U S A 100: 15247–15252. pmid:14657341 doi: 10.1073/pnas.2434676100
|
[50] | Murakami M, Matsuzaki T, Iwasa T, Yasui T, Irahara M, et al. (2008) Hypophysiotropic role of RFamide-related peptide-3 in the inhibition of LH secretion in female rats. J Endocrinol 199: 105–112. doi: 10.1677/JOE-08-0197. pmid:18653621
|
[51] | Klingerman CM, Williams WP 3rd, Simberlund J, Brahme N, Prasad A, et al. (2011) Food Restriction-Induced Changes in Gonadotropin-Inhibiting Hormone Cells are Associated with Changes in Sexual Motivation and Food Hoarding, but not Sexual Performance and Food Intake. Front Endocrinol (Lausanne) 2: 101. doi: 10.3389/fendo.2011.00101. pmid:22649396
|
[52] | Yano T, Iijima N, Kakihara K, Hinuma S, Tanaka M, et al. (2003) Localization and neuronal response of RFamide related peptides in the rat central nervous system. Brain Res 982: 156–167. pmid:12915251 doi: 10.1016/s0006-8993(03)02877-4
|
[53] | Kriegsfeld LJ, Mei DF, Bentley GE, Ubuka T, Mason AO, et al. (2006) Identification and characterization of a gonadotropin-inhibitory system in the brains of mammals. Proc Natl Acad Sci U S A 103: 2410–2415. pmid:16467147 doi: 10.1073/pnas.0511003103
|
[54] | Morrison SF, Madden CJ, Tupone D (2014) Central Neural Regulation of Brown Adipose Tissue Thermogenesis and Energy Expenditure. Cell Metab.
|
[55] | Rizwan MZ, Harbid AA, Inglis MA, Quennell JH, Anderson GM (2014) Evidence that hypothalamic RFamide related peptide-3 neurones are not leptin-responsive in mice and rats. J Neuroendocrinol 26: 247–257. doi: 10.1111/jne.12140. pmid:24612072
|