[1] | Lee JT, Strauss WM, Dausman JA, Jaenisch R (1996) A 450 kb transgene displays properties of the mammalian X-inactivation center. Cell 86: 83–94. pmid:8689690 doi: 10.1016/s0092-8674(00)80079-3
|
[2] | Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, et al. (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477: 295–300. doi: 10.1038/nature10398. pmid:21874018
|
[3] | Scheuermann JC, Boyer LA (2013) Getting to the heart of the matter: long non-coding RNAs in cardiac development and disease. EMBO J 32: 1805–1816. doi: 10.1038/emboj.2013.134. pmid:23756463
|
[4] | Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136: 629–641. doi: 10.1016/j.cell.2009.02.006. pmid:19239885
|
[5] | Gunes C, Rudolph KL (2013) The role of telomeres in stem cells and cancer. Cell 152: 390–393. doi: 10.1016/j.cell.2013.01.010. pmid:23374336
|
[6] | Bernardes de Jesus B, Blasco MA (2013) Telomerase at the intersection of cancer and aging. Trends Genet 29: 513–520. doi: 10.1016/j.tig.2013.06.007. pmid:23876621
|
[7] | Cifuentes-Rojas C, Shippen DE (2012) Telomerase regulation. Mutat Res 730: 20–27. doi: 10.1016/j.mrfmmm.2011.10.003. pmid:22032831
|
[8] | Karamysheva Z, Wang L, Shrode T, Bednenko J, Hurley LA, et al. (2003) Developmentally programmed gene elimination in Euplotes crassus facilitates a switch in the telomerase catalytic subunit. Cell 113: 565–576. pmid:12787498 doi: 10.1016/s0092-8674(03)00363-5
|
[9] | Wong MS, Wright WE, Shay JW (2014) Alternative splicing regulation of telomerase: a new paradigm? Trends Genet 30: 430–438. doi: 10.1016/j.tig.2014.07.006. pmid:25172021
|
[10] | McClintock B (1941) The stability of broken ends of chromosomes in Zea mays. Genetics 26: 234–282. pmid:17247004
|
[11] | Ribeyre C, Shore D (2013) Regulation of telomere addition at DNA double-strand breaks. Chromosoma 122: 159–173. doi: 10.1007/s00412-013-0404-2. pmid:23504035
|
[12] | Zhang W, Durocher D (2010) De novo telomere formation is suppressed by the Mec1-dependent inhibition of Cdc13 accumulation at DNA breaks. Genes Dev 24: 502–515. doi: 10.1101/gad.1869110. pmid:20194442
|
[13] | Makovets S, Blackburn EH (2009) DNA damage signalling prevents deleterious telomere addition at DNA breaks. Nat Cell Biol 11: 1383–1386. doi: 10.1038/ncb1985. pmid:19838171
|
[14] | Kharbanda S, Kumar V, Dhar S, Pandey P, Chen C, et al. (2000) Regulation of the hTERT telomerase catalytic subunit by the c-Abl tyrosine kinase. Curr Biol 10: 568–575. pmid:10837221 doi: 10.1016/s0960-9822(00)00483-8
|
[15] | Wong JM, Kusdra L, Collins K (2002) Subnuclear shuttling of human telomerase induced by transformation and DNA damage. Nat Cell Biol 4: 731–736. pmid:12198499 doi: 10.1038/ncb846
|
[16] | Cifuentes-Rojas C, Nelson AD, Boltz KA, Kannan K, She X, et al. (2012) An alternative telomerase RNA in Arabidopsis modulates enzyme activity in response to DNA damage. Genes Dev 26: 2512–2523. doi: 10.1101/gad.202960.112. pmid:23109676
|
[17] | Romero DP, Blackburn EH (1991) A conserved secondary structure for telomerase RNA. Cell 67: 343–353. pmid:1840508 doi: 10.1016/0092-8674(91)90186-3
|
[18] | Chen JL, Blasco MA, Greider CW (2000) Secondary structure of vertebrate telomerase RNA. Cell 100: 503–514. pmid:10721988 doi: 10.1016/s0092-8674(00)80687-x
|
[19] | Tzfati Y, Knight Z, Roy J, Blackburn EH (2003) A novel pseudoknot element is essential for the action of a yeast telomerase. Genes Dev 17: 1779–1788. pmid:12832393 doi: 10.1101/gad.1099403
|
[20] | Chappell AS, Lundblad V (2004) Structural elements required for association of the Saccharomyces cerevisiae telomerase RNA with the Est2 reverse transcriptase. Mol Cell Biol 24: 7720–7736. pmid:15314178 doi: 10.1128/mcb.24.17.7720-7736.2004
|
[21] | Qi X, Li Y, Honda S, Hoffmann S, Marz M, et al. (2013) The common ancestral core of vertebrate and fungal telomerase RNAs. Nucleic Acids Res 41: 450–462. doi: 10.1093/nar/gks980. pmid:23093598
|
[22] | Cairney CJ, Keith WN (2008) Telomerase redefined: integrated regulation of hTR and hTERT for telomere maintenance and telomerase activity. Biochimie 90: 13–23. pmid:17854971 doi: 10.1016/j.biochi.2007.07.025
|
[23] | Yi X, Tesmer VM, Savre-Train I, Shay JW, Wright WE (1999) Both transcriptional and posttranscriptional mechanisms regulate human telomerase template RNA levels. Mol Cell Biol 19: 3989–3997. pmid:10330139
|
[24] | Box JA, Bunch JT, Tang W, Baumann P (2008) Spliceosomal cleavage generates the 3' end of telomerase RNA. Nature 456: 910–914. doi: 10.1038/nature07584. pmid:19052544
|
[25] | Tang W, Kannan R, Blanchette M, Baumann P (2012) Telomerase RNA biogenesis involves sequential binding by Sm and Lsm complexes. Nature 484: 260–264. doi: 10.1038/nature10924. pmid:22446625
|
[26] | Cifuentes-Rojas C, Kannan K, Tseng L, Shippen DE (2011) Two RNA subunits and POT1a are components of Arabidopsis telomerase. Proc Natl Acad Sci U S A 108: 73–78. doi: 10.1073/pnas.1013021107. pmid:21164032
|
[27] | Beilstein MA, Brinegar AE, Shippen DE (2012) Evolution of the Arabidopsis telomerase RNA. Front Genet 3: 188. pmid:23015808 doi: 10.3389/fgene.2012.00188
|
[28] | Lysak MA, Koch MA, Beaulieu JM, Meister A, Leitch IJ (2009) The dynamic ups and downs of genome size evolution in Brassicaceae. Mol Biol Evol 26: 85–98. doi: 10.1093/molbev/msn223. pmid:18842687
|
[29] | Beilstein MA, Nagalingum NS, Clements MD, Manchester SR, Mathews S (2010) Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proc Natl Acad Sci U S A 107: 18724–18728. doi: 10.1073/pnas.0909766107. pmid:20921408
|
[30] | Ziolkowski PA, Koczyk G, Galganski L, Sadowski J (2009) Genome sequence comparison of Col and Ler lines reveals the dynamic nature of Arabidopsis chromosomes. Nucleic Acids Res 37: 3189–3201. doi: 10.1093/nar/gkp183. pmid:19305000
|
[31] | Samach A, Melamed-Bessudo C, Avivi-Ragolski N, Pietrokovski S, Levy AA (2011) Identification of plant RAD52 homologs and characterization of the Arabidopsis thaliana RAD52-like genes. Plant Cell 23: 4266–4279. doi: 10.1105/tpc.111.091744. pmid:22202891
|
[32] | de Souza FS, Franchini LF, Rubinstein M (2013) Exaptation of transposable elements into novel cis-regulatory elements: is the evidence always strong? Mol Biol Evol 30: 1239–1251. doi: 10.1093/molbev/mst045. pmid:23486611
|
[33] | Studer A, Zhao Q, Ross-Ibarra J, Doebley J (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet 43: 1160–1163. doi: 10.1038/ng.942. pmid:21946354
|
[34] | Sela N, Mersch B, Hotz-Wagenblatt A, Ast G (2010) Characteristics of transposable element exonization within human and mouse. PLoS One 5: e10907. doi: 10.1371/journal.pone.0010907. pmid:20532223
|
[35] | Kelley D, Rinn J (2012) Transposable elements reveal a stem cell-specific class of long noncoding RNAs. Genome Biol 13: R107. doi: 10.1186/gb-2012-13-11-r107. pmid:23181609
|
[36] | Johnson R, Guigo R (2014) The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA 20: 959–976. doi: 10.1261/rna.044560.114. pmid:24850885
|
[37] | Kapusta A, Kronenberg Z, Lynch VJ, Zhuo X, Ramsay L, et al. (2013) Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet 9: e1003470. doi: 10.1371/journal.pgen.1003470. pmid:23637635
|
[38] | Wutz A, Rasmussen TP, Jaenisch R (2002) Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat Genet 30: 167–174. pmid:11780141 doi: 10.1038/ng820
|
[39] | Cao J, Schneeberger K, Ossowski S, Gunther T, Bender S, et al. (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43: 956–963. doi: 10.1038/ng.911. pmid:21874002
|
[40] | Gazzani S, Gendall AR, Lister C, Dean C (2003) Analysis of the molecular basis of flowering time variation in Arabidopsis accessions. Plant Physiol 132: 1107–1114. pmid:12805638 doi: 10.1104/pp.103.021212
|
[41] | Clark MB, Johnston RL, Inostroza-Ponta M, Fox AH, Fortini E, et al. (2012) Genome-wide analysis of long noncoding RNA stability. Genome Res 22: 885–898. doi: 10.1101/gr.131037.111. pmid:22406755
|
[42] | Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, et al. (2011) Global quantification of mammalian gene expression control. Nature 473: 337–342. doi: 10.1038/nature10098. pmid:21593866
|
[43] | Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S, et al. (2012) Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24: 1242–1255. doi: 10.1105/tpc.111.095232. pmid:22427337
|
[44] | Dutertre M, Lambert S, Carreira A, Amor-Gueret M, Vagner S (2014) DNA damage: RNA-binding proteins protect from near and far. Trends Biochem Sci 39: 141–149. doi: 10.1016/j.tibs.2014.01.003. pmid:24534650
|
[45] | Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20: 3407–3425. pmid:17182867 doi: 10.1101/gad.1476406
|
[46] | Wei W, Ba Z, Gao M, Wu Y, Ma Y, et al. (2012) A role for small RNAs in DNA double-strand break repair. Cell 149: 101–112. doi: 10.1016/j.cell.2012.03.002. pmid:22445173
|
[47] | Lenzken SC, Loffreda A, Barabino SM (2013) RNA splicing: a new player in the DNA damage response. Int J Cell Biol 2013: 153634. doi: 10.1155/2013/153634. pmid:24159334
|
[48] | Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, et al. (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43: 476–481. doi: 10.1038/ng.807. pmid:21478890
|
[49] | Cheng F, Liu S, Wu J, Fang L, Sun S, et al. (2011) BRAD, the genetics and genomics database for Brassica plants. BMC Plant Biol 11: 136. doi: 10.1186/1471-2229-11-136. pmid:21995777
|
[50] | Kannan K, Nelson AD, Shippen DE (2008) Dyskerin is a component of the Arabidopsis telomerase RNP required for telomere maintenance. Mol Cell Biol 28: 2332–2341. doi: 10.1128/MCB.01490-07. pmid:18212040
|
[51] | Golisz A, Sikorski PJ, Kruszka K, Kufel J (2013) Arabidopsis thaliana LSM proteins function in mRNA splicing and degradation. Nucleic Acids Res 41: 6232–6249. doi: 10.1093/nar/gkt296. pmid:23620288
|
[52] | Zhang X, Henriques R, Lin SS, Niu QW, Chua NH (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1: 641–646. pmid:17406292 doi: 10.1038/nprot.2006.97
|
[53] | Pecinka A, Rosa M, Schikora A, Berlinger M, Hirt H, et al. (2009) Transgenerational stress memory is not a general response in Arabidopsis. PLoS One 4: e5202. doi: 10.1371/journal.pone.0005202. pmid:19381297
|