全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2015 

Transfer RNAs Mediate the Rapid Adaptation of Escherichia coli to Oxidative Stress

DOI: 10.1371/journal.pgen.1005302

Full-Text   Cite this paper   Add to My Lib

Abstract:

Translational systems can respond promptly to sudden environmental changes to provide rapid adaptations to environmental stress. Unlike the well-studied translational responses to oxidative stress in eukaryotic systems, little is known regarding how prokaryotes respond rapidly to oxidative stress in terms of translation. In this study, we measured protein synthesis from the entire Escherichia coli proteome and found that protein synthesis was severely slowed down under oxidative stress. With unchanged translation initiation, this slowdown was caused by decreased translation elongation speed. We further confirmed by tRNA sequencing and qRT-PCR that this deceleration was caused by a global, enzymatic downregulation of almost all tRNA species shortly after exposure to oxidative agents. Elevation in tRNA levels accelerated translation and protected E. coli against oxidative stress caused by hydrogen peroxide and the antibiotic ciprofloxacin. Our results showed that the global regulation of tRNAs mediates the rapid adjustment of the E. coli translation system for prompt adaptation to oxidative stress.

References

[1]  Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3: 3–8. pmid:10963327
[2]  Kryston TB, Georgiev AB, Pissis P, Georgakilas AG (2011) Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res 711: 193–201. doi: 10.1016/j.mrfmmm.2010.12.016. pmid:21216256
[3]  Imlay JA (2013) The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11: 443–454. doi: 10.1038/nrmicro3032. pmid:23712352
[4]  Jozefczuk S, Klie S, Catchpole G, Szymanski J, Cuadros-Inostroza A, et al. (2010) Metabolomic and transcriptomic stress response of Escherichia coli. Mol Syst Biol 6: 364. doi: 10.1038/msb.2010.18. pmid:20461071
[5]  Lackner DH, Schmidt MW, Wu S, Wolf DA, Bahler J (2012) Regulation of transcriptome, translation, and proteome in response to environmental stress in fission yeast. Genome Biol 13: R25. doi: 10.1186/gb-2012-13-4-r25. pmid:22512868
[6]  Davies KJ (1999) The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life 48: 41–47. pmid:10791914 doi: 10.1080/713803463
[7]  de Nadal E, Ammerer G, Posas F (2011) Controlling gene expression in response to stress. Nat Rev Genet 12: 833–845. doi: 10.1038/nrg3055. pmid:22048664
[8]  Shenton D, Smirnova JB, Selley JN, Carroll K, Hubbard SJ, et al. (2006) Global translational responses to oxidative stress impact upon multiple levels of protein synthesis. J Biol Chem 281: 29011–29021. pmid:16849329 doi: 10.1074/jbc.m601545200
[9]  Thompson DM, Lu C, Green PJ, Parker R (2008) tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA 14: 2095–2103. doi: 10.1261/rna.1232808. pmid:18719243
[10]  Yamasaki S, Ivanov P, Hu GF, Anderson P (2009) Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol 185: 35–42. doi: 10.1083/jcb.200811106. pmid:19332886
[11]  Fu H, Feng J, Liu Q, Sun F, Tie Y, et al. (2009) Stress induces tRNA cleavage by angiogenin in mammalian cells. FEBS Lett 583: 437–442. doi: 10.1016/j.febslet.2008.12.043. pmid:19114040
[12]  Saikia M, Krokowski D, Guan BJ, Ivanov P, Parisien M, et al. (2012) Genome-wide identification and quantitative analysis of cleaved tRNA fragments induced by cellular stress. J Biol Chem 287: 42708–42725. doi: 10.1074/jbc.M112.371799. pmid:23086926
[13]  Czech A, Wende S, Morl M, Pan T, Ignatova Z (2013) Reversible and rapid transfer-RNA deactivation as a mechanism of translational repression in stress. PLoS Genet 9: e1003767. doi: 10.1371/journal.pgen.1003767. pmid:24009533
[14]  Lee YS, Shibata Y, Malhotra A, Dutta A (2009) A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 23: 2639–2649. doi: 10.1101/gad.1837609. pmid:19933153
[15]  Ivanov P, Emara MM, Villen J, Gygi SP, Anderson P (2011) Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell 43: 613–623. doi: 10.1016/j.molcel.2011.06.022. pmid:21855800
[16]  Vogel C, Silva GM, Marcotte EM (2011) Protein expression regulation under oxidative stress. Mol Cell Proteomics 10: M111 009217. doi: 10.1074/mcp.m111.009217
[17]  Chan CT, Pang YL, Deng W, Babu IR, Dyavaiah M, et al. (2012) Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat Commun 3: 937. doi: 10.1038/ncomms1938. pmid:22760636
[18]  Tomita K, Ogawa T, Uozumi T, Watanabe K, Masaki H (2000) A cytotoxic ribonuclease which specifically cleaves four isoaccepting arginine tRNAs at their anticodon loops. Proc Natl Acad Sci U S A 97: 8278–8283. pmid:10880568 doi: 10.1073/pnas.140213797
[19]  Jiang Y, Meidler R, Amitsur M, Kaufmann G (2001) Specific interaction between anticodon nuclease and the tRNA(Lys) wobble base. J Mol Biol 305: 377–388. pmid:11152597 doi: 10.1006/jmbi.2000.4282
[20]  Meineke B, Shuman S (2012) Determinants of the cytotoxicity of PrrC anticodon nuclease and its amelioration by tRNA repair. RNA 18: 145–154. doi: 10.1261/rna.030171.111. pmid:22101242
[21]  Ling J, Soll D (2010) Severe oxidative stress induces protein mistranslation through impairment of an aminoacyl-tRNA synthetase editing site. Proc Natl Acad Sci U S A 107: 4028–4033. doi: 10.1073/pnas.1000315107. pmid:20160114
[22]  Bessette PH, Aslund F, Beckwith J, Georgiou G (1999) Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci U S A 96: 13703–13708. pmid:10570136 doi: 10.1073/pnas.96.24.13703
[23]  Sorensen HP, Mortensen KK (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115: 113–128. pmid:15607230 doi: 10.1016/j.jbiotec.2004.08.004
[24]  Tang Y, Quail MA, Artymiuk PJ, Guest JR, Green J (2002) Escherichia coli aconitases and oxidative stress: post-transcriptional regulation of sodA expression. Microbiology 148: 1027–1037. pmid:11932448
[25]  Luders S, Fallet C, Franco-Lara E (2009) Proteome analysis of the Escherichia coli heat shock response under steady-state conditions. Proteome Sci 7: 36. doi: 10.1186/1477-5956-7-36. pmid:19772559
[26]  Maier T, Schmidt A, Guell M, Kuhner S, Gavin AC, et al. (2011) Quantification of mRNA and protein and integration with protein turnover in a bacterium. Mol Syst Biol 7: 511. doi: 10.1038/msb.2011.38. pmid:21772259
[27]  Wu J, Jiang Z, Liu M, Gong X, Wu S, et al. (2009) Polynucleotide phosphorylase protects Escherichia coli against oxidative stress. Biochemistry 48: 2012–2020. doi: 10.1021/bi801752p. pmid:19219992
[28]  Mostertz J, Scharf C, Hecker M, Homuth G (2004) Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. Microbiology 150: 497–512. pmid:14766928 doi: 10.1099/mic.0.26665-0
[29]  Doherty MK, Hammond DE, Clague MJ, Gaskell SJ, Beynon RJ (2009) Turnover of the human proteome: determination of protein intracellular stability by dynamic SILAC. J Proteome Res 8: 104–112. doi: 10.1021/pr800641v. pmid:18954100
[30]  Westman-Brinkmalm A, Abramsson A, Pannee J, Gang C, Gustavsson MK, et al. (2011) SILAC zebrafish for quantitative analysis of protein turnover and tissue regeneration. J Proteomics 75: 425–434. doi: 10.1016/j.jprot.2011.08.008. pmid:21890006
[31]  Cambridge SB, Gnad F, Nguyen C, Bermejo JL, Kruger M, et al. (2011) Systems-wide proteomic analysis in mammalian cells reveals conserved, functional protein turnover. J Proteome Res 10: 5275–5284. doi: 10.1021/pr101183k. pmid:22050367
[32]  Mann M (2006) Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 7: 952–958. pmid:17139335 doi: 10.1038/nrm2067
[33]  Hinkson IV, Elias JE (2011) The dynamic state of protein turnover: It's about time. Trends Cell Biol 21: 293–303. doi: 10.1016/j.tcb.2011.02.002. pmid:21474317
[34]  Snijders AP, de Koning B, Wright PC (2005) Perturbation and interpretation of nitrogen isotope distribution patterns in proteomics. J Proteome Res 4: 2185–2191. pmid:16335965 doi: 10.1021/pr050260l
[35]  Martin SF, Munagapati VS, Salvo-Chirnside E, Kerr LE, Le Bihan T (2012) Proteome turnover in the green alga Ostreococcus tauri by time course 15N metabolic labeling mass spectrometry. J Proteome Res 11: 476–486. doi: 10.1021/pr2009302. pmid:22077659
[36]  Xiao CL, Chen XZ, Du YL, Sun X, Zhang G, et al. (2013) Binomial probability distribution model-based protein identification algorithm for tandem mass spectrometry utilizing peak intensity information. J Proteome Res 12: 328–335. doi: 10.1021/pr300781t. pmid:23163785
[37]  Imlay JA, Linn S (1986) Bimodal pattern of killing of DNA-repair-defective or anoxically grown Escherichia coli by hydrogen peroxide. J Bacteriol 166: 519–527. pmid:3516975
[38]  Imlay JA, Linn S (1987) Mutagenesis and stress responses induced in Escherichia coli by hydrogen peroxide. J Bacteriol 169: 2967–2976. pmid:3298208 doi: 10.1242/jcs.1984.supplement_6.19
[39]  Filiou MD, Varadarajulu J, Teplytska L, Reckow S, Maccarrone G, et al. (2012) The 15N isotope effect in Escherichia coli: a neutron can make the difference. Proteomics 12: 3121–3128. doi: 10.1002/pmic.201200209. pmid:22887715
[40]  Fedyunin I, Lehnhardt L, Bohmer N, Kaufmann P, Zhang G, et al. (2012) tRNA concentration fine tunes protein solubility. FEBS Lett 586: 3336–3340. doi: 10.1016/j.febslet.2012.07.012. pmid:22819830
[41]  Tamarit J, Cabiscol E, Ros J (1998) Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stress. J Biol Chem 273: 3027–3032. pmid:9446617 doi: 10.1074/jbc.273.5.3027
[42]  Machnicka MA, Milanowska K, Osman Oglou O, Purta E, Kurkowska M, et al. (2013) MODOMICS: a database of RNA modification pathways--2013 update. Nucleic Acids Res 41: D262–267. doi: 10.1093/nar/gks1007. pmid:23118484
[43]  Puri P, Wetzel C, Saffert P, Gaston KW, Russell SP, et al. (2014) Systematic identification of tRNAome and its dynamics in Lactococcus lactis. Mol Microbiol. doi: 10.1111/mmi.12710
[44]  Zhang G, Fedyunin I, Miekley O, Valleriani A, Moura A, et al. (2010) Global and local depletion of ternary complex limits translational elongation. Nucleic Acids Res 38: 4778–4787. doi: 10.1093/nar/gkq196. pmid:20360046
[45]  Zhang G, Hubalewska M, Ignatova Z (2009) Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat Struct Mol Biol 16: 274–280. doi: 10.1038/nsmb.1554. pmid:19198590
[46]  Goswami M, Mangoli SH, Jawali N (2006) Involvement of reactive oxygen species in the action of ciprofloxacin against Escherichia coli. Antimicrob Agents Chemother 50: 949–954. pmid:16495256 doi: 10.1128/aac.50.3.949-954.2006
[47]  Dwyer DJ, Kohanski MA, Hayete B, Collins JJ (2007) Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. Mol Syst Biol 3: 91. pmid:17353933 doi: 10.1038/msb4100135
[48]  Katz A, Orellana O (2012) Protein Synthesis and the Stress Response. In: Biyani M, editor. Cell-Free Protein Synthesis: InTech. pp. 111–134.
[49]  Moll I, Engelberg-Kulka H (2012) Selective translation during stress in Escherichia coli. Trends Biochem Sci 37: 493–498. doi: 10.1016/j.tibs.2012.07.007. pmid:22939840
[50]  Nakamura T, Cho DH, Lipton SA (2012) Redox regulation of protein misfolding, mitochondrial dysfunction, synaptic damage, and cell death in neurodegenerative diseases. Exp Neurol 238: 12–21. doi: 10.1016/j.expneurol.2012.06.032. pmid:22771760
[51]  Bhattacharya A, Wei R, Hamilton RT, Chaudhuri AR (2014) Neuronal cells but not muscle cells are resistant to oxidative stress mediated protein misfolding and cell death: role of molecular chaperones. Biochem Biophys Res Commun 446: 1250–1254. doi: 10.1016/j.bbrc.2014.03.097. pmid:24685484
[52]  Collins LJ, Biggs PJ (2011) RNA networks in prokaryotes II: tRNA processing and small RNAs. Adv Exp Med Biol 722: 221–230. doi: 10.1007/978-1-4614-0332-6_14. pmid:21915792
[53]  Deutscher MP (1984) Processing of tRNA in prokaryotes and eukaryotes. CRC Crit Rev Biochem 17: 45–71. pmid:6094100
[54]  Durfee T, Hansen AM, Zhi H, Blattner FR, Jin DJ (2008) Transcription profiling of the stringent response in Escherichia coli. J Bacteriol 190: 1084–1096. pmid:18039766 doi: 10.1128/jb.01092-07
[55]  Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25: 955–964. pmid:9023104 doi: 10.1093/nar/25.5.955
[56]  Chan PP, Lowe TM (2009) GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res 37: D93–97. doi: 10.1093/nar/gkn787. pmid:18984615
[57]  Zhang G, Lukoszek R, Mueller-Roeber B, Ignatova Z (2011) Different sequence signatures in the upstream regions of plant and animal tRNA genes shape distinct modes of regulation. Nucleic Acids Res 39: 3331–3339. doi: 10.1093/nar/gkq1257. pmid:21138970
[58]  Phizicky EM, Hopper AK (2010) tRNA biology charges to the front. Genes Dev 24: 1832–1860. doi: 10.1101/gad.1956510. pmid:20810645
[59]  Chen P, Jager G, Zheng B (2010) Transfer RNA modifications and genes for modifying enzymes in Arabidopsis thaliana. BMC Plant Biol 10: 201. doi: 10.1186/1471-2229-10-201. pmid:20836892
[60]  Hopper AK, Phizicky EM (2003) tRNA transfers to the limelight. Genes Dev 17: 162–180. pmid:12533506 doi: 10.1101/gad.1049103
[61]  Sneppen K, Dodd IB, Shearwin KE, Palmer AC, Schubert RA, et al. (2005) A mathematical model for transcriptional interference by RNA polymerase traffic in Escherichia coli. J Mol Biol 346: 399–409. pmid:15670592 doi: 10.1016/j.jmb.2004.11.075
[62]  Perez-Ortin JE, Alepuz PM, Moreno J (2007) Genomics and gene transcription kinetics in yeast. Trends Genet 23: 250–257. pmid:17379352 doi: 10.1016/j.tig.2007.03.006
[63]  Jepras RI, Carter J, Pearson SC, Paul FE, Wilkinson MJ (1995) Development of a robust flow cytometric assay for determining numbers of viable bacteria. Appl Environ Microbiol 61: 2696–2701. pmid:16535078
[64]  Rault A, Beal C, Ghorbal S, Ogier JC, Bouix M (2007) Multiparametric flow cytometry allows rapid assessment and comparison of lactic acid bacteria viability after freezing and during frozen storage. Cryobiology 55: 35–43. pmid:17577587 doi: 10.1016/j.cryobiol.2007.04.005
[65]  Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1: 2856–2860. pmid:17406544 doi: 10.1038/nprot.2006.468
[66]  Sun X, Jia HL, Xiao CL, Yin XF, Yang XY, et al. (2011) Bacterial proteome of streptococcus pneumoniae through multidimensional separations coupled with LC-MS/MS. OMICS 15: 477–482. doi: 10.1089/omi.2010.0113. pmid:21699404
[67]  Bore E, Hebraud M, Chafsey I, Chambon C, Skjaeret C, et al. (2007) Adapted tolerance to benzalkonium chloride in Escherichia coli K-12 studied by transcriptome and proteome analyses. Microbiology 153: 935–946. pmid:17379704 doi: 10.1099/mic.0.29288-0
[68]  Alexandrov A, Chernyakov I, Gu W, Hiley SL, Hughes TR, et al. (2006) Rapid tRNA decay can result from lack of nonessential modifications. Mol Cell 21: 87–96. pmid:16387656 doi: 10.1016/j.molcel.2005.10.036

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133