全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2015 

The Regulatory T Cell Lineage Factor Foxp3 Regulates Gene Expression through Several Distinct Mechanisms Mostly Independent of Direct DNA Binding

DOI: 10.1371/journal.pgen.1005251

Full-Text   Cite this paper   Add to My Lib

Abstract:

The lineage factor Foxp3 is essential for the development and maintenance of regulatory T cells, but little is known about the mechanisms involved. Here, we demonstrate that an N-terminal proline-rich interaction region is crucial for Foxp3’s function. Subdomains within this key region link Foxp3 to several independent mechanisms of transcriptional regulation. Our study suggests that Foxp3, even in the absence of its DNA-binding forkhead domain, acts as a bridge between DNA-binding interaction partners and proteins with effector function permitting it to regulate a large number of genes. We show that, in one such mechanism, Foxp3 recruits class I histone deacetylases to the promoters of target genes, counteracting activation-induced histone acetylation and thereby suppressing their expression.

References

[1]  Wing K, Sakaguchi S (2010) Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol 11: 7–13. doi: 10.1038/ni.1818. pmid:20016504
[2]  Kim JM, Rasmussen JP, Rudensky AY (2007) Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol 8: 191–197. pmid:17136045 doi: 10.1038/ni1428
[3]  Lahl K, Loddenkemper C, Drouin C, Freyer J, Arnason J, et al. (2007) Selective depletion of Foxp3(+) regulatory T cells induces a scurfy-like disease. J. Exp. Med. 204: 57–63. pmid:17200412 doi: 10.1084/jem.20061852
[4]  Chen T, Darrasse-Jeze G, Bergot AS, Courau T, Churlaud G, et al. (2013) Self-specific memory regulatory T cells protect embryos at implantation in mice. J Immunol 191: 2273–2281. doi: 10.4049/jimmunol.1202413. pmid:23913969
[5]  Izcue A, Coombes JL, Powrie F (2006) Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation. Immunol Rev 212: 256–271. pmid:16903919 doi: 10.1111/j.0105-2896.2006.00423.x
[6]  Campbell DJ, Ziegler SF (2007) FOXP3 modifies the phenotypic and functional properties of regulatory T cells. Nat Rev Immunol 7: 305–310. pmid:17380159 doi: 10.1038/nri2061
[7]  Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, et al. (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22: 329–341. pmid:15780990 doi: 10.1016/j.immuni.2005.01.016
[8]  Dhamne C, Chung Y, Alousi AM, Cooper LJ, Tran DQ (2013) Peripheral and thymic foxp3(+) regulatory T cells in search of origin, distinction, and function. Front Immunol 4: 253. doi: 10.3389/fimmu.2013.00253. pmid:23986762
[9]  Ohkura N, Hamaguchi M, Morikawa H, Sugimura K, Tanaka A, et al. (2012) T Cell Receptor Stimulation-Induced Epigenetic Changes and Foxp3 Expression Are Independent and Complementary Events Required for Treg Cell Development. Immunity 37: 785–799. doi: 10.1016/j.immuni.2012.09.010. pmid:23123060
[10]  Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, et al. (2001) Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27: 68–73. pmid:11138001
[11]  Lahl K, Mayer CT, Bopp T, Huehn J, Loddenkemper C, et al. (2009) Nonfunctional Regulatory T Cells and Defective Control of Th2 Cytokine Production in Natural Scurfy Mutant Mice. J. Immunl. 183: 5662–5672. doi: 10.4049/jimmunol.0803762
[12]  Li B, Samanta A, Song X, Iacono KT, Brennan P, et al. (2007) FOXP3 is a homo-oligomer and a component of a supramolecular regulatory complex disabled in the human XLAAD/IPEX autoimmune disease. Int Immunol 19: 825–835. pmid:17586580 doi: 10.1093/intimm/dxm043
[13]  Rudra D, deRoos P, Chaudhry A, Niec RE, Arvey A, et al. (2012) Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nat Immunol 13: 1010–1019. doi: 10.1038/ni.2402. pmid:22922362
[14]  Bandukwala HS, Wu Y, Feuerer M, Chen Y, Barboza B, et al. (2011) Structure of a domain-swapped FOXP3 dimer on DNA and its function in regulatory T cells. Immunity 34: 479–491. doi: 10.1016/j.immuni.2011.02.017. pmid:21458306
[15]  Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, et al. (2007) Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445: 931–935. pmid:17237765 doi: 10.1038/nature05478
[16]  Song X, Li B, Xiao Y, Chen C, Wang Q, et al. (2012) Structural and biological features of FOXP3 dimerization relevant to regulatory T cell function. Cell Rep 1: 665–675. doi: 10.1016/j.celrep.2012.04.012. pmid:22813742
[17]  Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, et al. (2007) Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445: 936–940. pmid:17237761 doi: 10.1038/nature05563
[18]  Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, et al. (2006) FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126: 375–387. pmid:16873067 doi: 10.1016/j.cell.2006.05.042
[19]  Ono M, Yaguchi H, Ohkura N, Kitabayashi I, Nagamura Y, et al. (2007) Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446: 685–689. pmid:17377532 doi: 10.1038/nature05673
[20]  Pan F, Yu H, Dang EV, Barbi J, Pan X, et al. (2009) Eos mediates Foxp3-dependent gene silencing in CD4+ regulatory T cells. Science 325: 1142–1146. doi: 10.1126/science.1176077. pmid:19696312
[21]  Loizou L, Andersen KG, Betz AG (2011) Foxp3 interacts with c-Rel to mediate NF-kappaB repression. PLoS One 6: e18670. doi: 10.1371/journal.pone.0018670. pmid:21490927
[22]  Zhang F, Meng G, Strober W (2008) Interactions among the transcription factors Runx1, RORgammat and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nat Immunol 9: 1297–1306. doi: 10.1038/ni.1663. pmid:18849990
[23]  Li B, Samanta A, Song X, Iacono KT, Bembas K, et al. (2007) FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc Natl Acad Sci U S A 104: 4571–4576. pmid:17360565 doi: 10.1073/pnas.0700298104
[24]  Chen C, Rowell EA, Thomas RM, Hancock WW, Wells AD (2006) Transcriptional regulation by Foxp3 is associated with direct promoter occupancy and modulation of histone acetylation. J Biol Chem 281: 36828–36834. pmid:17028180 doi: 10.1074/jbc.m608848200
[25]  Bettelli E, Dastrange M, Oukka M (2005) Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc Natl Acad Sci U S A 102: 5138–5143. pmid:15790681 doi: 10.1073/pnas.0501675102
[26]  Andersen KG, Butcher T, Betz AG (2008) Specific immunosuppression with inducible Foxp3-transduced polyclonal T cells. PLoS Biol 6: e276. doi: 10.1371/journal.pbio.0060276. pmid:18998771
[27]  Hebenstreit D, Fang M, Gu M, Charoensawan V, van Oudenaarden A, et al. (2011) RNA sequencing reveals two major classes of gene expression levels in metazoan cells. Mol Syst Biol 7: 497. doi: 10.1038/msb.2011.28. pmid:21654674
[28]  Andersen KG, Nissen JK, Betz AG (2012) Comparative Genomics Reveals Key Gain-of-Function Events in Foxp3 during Regulatory T Cell Evolution. Front Immunol 3: 113. doi: 10.3389/fimmu.2012.00113. pmid:22590469
[29]  Stubbington MJT, Mahata B, Svensson V, Deonarine A, Nissen JK, et al. (2015) An atlas of mouse CD4+ T cell transcriptomes. Biology Direct. 10:14. doi: 10.1186/s13062-015-0045-x. pmid:25886751
[30]  Samstein RM, Arvey A, Josefowicz SZ, Peng X, Reynolds A, et al. (2012) Foxp3 Exploits a Pre-Existent Enhancer Landscape for Regulatory T Cell Lineage Specification. Cell 151: 153–166. doi: 10.1016/j.cell.2012.06.053. pmid:23021222
[31]  Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10: 57–63. doi: 10.1038/nrg2484. pmid:19015660
[32]  Bhattacharya S, Andorf S, Gomes L, Dunn P, Schaefer H, et al. (2014) ImmPort: disseminating data to the public for the future of immunology. Immunol. Res. 58: 234–239. doi: 10.1007/s12026-014-8516-1. pmid:24791905
[33]  Hancock WW, Ozkaynak E (2009) Three Distinct Domains Contribute to Nuclear Transport of Murine Foxp3. Plos One 4: e7890. doi: 10.1371/journal.pone.0007890. pmid:19924293
[34]  Lin W, Haribhai D, Relland LM, Truong N, Carlson MR, et al. (2007) Regulatory T cell development in the absence of functional Foxp3. Nat. Immunol. 8: 359–368. pmid:17273171 doi: 10.1038/ni1445
[35]  Camperio C, Caristi S, Fanelli G, Soligo M, Del Porto P, et al. (2012) Forkhead Transcription Factor FOXP3 Upregulates CD25 Expression through Cooperation with RelA/NF-kappa B. Plos One 7: e48303. doi: 10.1371/journal.pone.0048303. pmid:23144749
[36]  Metzler B, Burkhart C, Wraith DC (1999) Phenotypic analysis of CTLA-4 and CD28 expression during transient peptide-induced T cell activation in vivo. Int Immunol 11: 667–675. pmid:10330272 doi: 10.1093/intimm/11.5.667
[37]  de la Rosa M, Rutz S, Dorninger H, Scheffold A (2004) Interleukin-2 is essential for CD4+CD25+ regulatory T cell function. Eur J Immunol 34: 2480–2488. pmid:15307180 doi: 10.1002/eji.200425274
[38]  Boucheron N, Tschismarov R, Goeschl L, Moser MA, Lagger S, et al. (2014) CD4(+) T cell lineage integrity is controlled by the histone deacetylases HDAC1 and HDAC2. Nat Immunol 15: 439–448. doi: 10.1038/ni.2864. pmid:24681565
[39]  Baine I, Basu S, Ames R, Sellers RS, Macian F (2013) Helios induces epigenetic silencing of IL2 gene expression in regulatory T cells. J Immunol 190: 1008–1016. doi: 10.4049/jimmunol.1200792. pmid:23275607
[40]  Lee SM, Gao B, Fang DY (2008) FoxP3 maintains Treg unresponsiveness by selectively inhibiting the promoter DNA-binding activity of AP-1. Blood 111: 3599–3606. doi: 10.1182/blood-2007-09-115014. pmid:18223166
[41]  Bandyopadhyay S, Dure M, Paroder M, Soto-Nieves N, Puga I, et al. (2007) Interleukin 2 gene transcription is regulated by Ikaros-induced changes in histone acetylation in anergic T cells. Blood 109: 2878–2886. pmid:17148585 doi: 10.1182/blood-2006-07-037754
[42]  Bandyopadhyay S, Montagna C, Macian F (2012) Silencing of the Il2 gene transcription is regulated by epigenetic changes in anergic T cells. Eur J Immunol 42: 2471–2483. doi: 10.1002/eji.201142307. pmid:22684523
[43]  Kay BK, Williamson MP, Sudol P (2000) The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. Faseb Journal 14: 231–241. pmid:10657980
[44]  van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, et al. (2014) Classification of Intrinsically Disordered Regions and Proteins. Chem Rev 114: 6589–6631. doi: 10.1021/cr400525m. pmid:24773235
[45]  Sojka DK, Hughson A, Fowell DJ (2009) CTLA-4 is required by CD4(+)CD25(+) Treg to control CD4(+) T-cell lymphopenia-induced proliferation. Eur J Immunol 39: 1544–1551. doi: 10.1002/eji.200838603. pmid:19462377
[46]  Bachetta R, Gambineri E, Passerini L, Barzaghi F, Mannurita SC, et al. (2012) Ipex Syndrome: Clinical and Immunological Findings. Update from the Italian Study Group of Ipex. J Clin Immunol 32: 79–79.
[47]  Katoh H, Zheng P, Liu Y (2013) FOXP3: Genetic and epigenetic implications for autoimmunity. J Autoimmun 41: 72–78. doi: 10.1016/j.jaut.2012.12.004. pmid:23313429
[48]  van Loosdregt J, Vercoulen Y, Guichelaar T, Gent YYJ, Beekman JM, et al. (2010) Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood 115: 965–974. doi: 10.1182/blood-2009-02-207118. pmid:19996091
[49]  Chen ZJ, Barbi J, Bu SR, Yang HY, Li ZY, et al. (2013) The Ubiquitin Ligase Stub1 Negatively Modulates Regulatory T Cell Suppressive Activity by Promoting Degradation of the Transcription Factor Foxp3. Immunity 39: 272–285. doi: 10.1016/j.immuni.2013.08.006. pmid:23973223
[50]  Morawski PA, Mehra P, Chen CX, Bhatti T, Wells AD (2013) Foxp3 Protein Stability Is Regulated by Cyclin-dependent Kinase 2. J Biol Chem 288: 24494–24502. doi: 10.1074/jbc.M113.467704. pmid:23853094
[51]  Tao R, de Zoeten EF, Ozkaynak E, Chen CX, Wang LQ, et al. (2007) Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med 13: 1299–1307. pmid:17922010 doi: 10.1038/nm1652
[52]  Akimova T, Beier UH, Liu YJ, Wang LQ, Hancock WW (2012) Histone/protein deacetylases and T-cell immune responses. Blood 119: 2443–2451. doi: 10.1182/blood-2011-10-292003. pmid:22246031
[53]  Su L, Creusot RJ, Gallo EM, Chan SM, Utz PJ, et al. (2004) Murine CD4(+) CD25(+) regulatory T cells fail to undergo chromatin remodeling across the proximal promoter region of the IL-2 gene. J Immunol 173: 4994–5001. pmid:15470042 doi: 10.4049/jimmunol.173.8.4994
[54]  Levine AG, Arvey A, Jin W, Rudensky AY (2014) Continuous requirement for the TCR in regulatory T cell function. Nat Immunol 15: 1070–1078. doi: 10.1038/ni.3004. pmid:25263123
[55]  Kendal AR, Chen Y, Regateiro FS, Ma J, Adams E, et al (2011) Sustained suppression by Foxp3+ regulatory T cells is vital for infectious transplantation tolerance. J Exp Med. 208: 2043–2053. doi: 10.1084/jem.20110767. pmid:21875958
[56]  Bloor S, Ryzhakov G, Wagner S, Jonathan P, Butler G, et al. (2008) Signal processing by its coil zipper domain activates IKK gamma. Proc Natl Acad Sci U S A 105: 1279–1284. doi: 10.1073/pnas.0706552105. pmid:18216269
[57]  Wu TD, Nacu S (2010) Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26: 873–881. doi: 10.1093/bioinformatics/btq057. pmid:20147302
[58]  Anders S, Pyl PT, Huber W (2014) HTSeq—A Python framework to work with high-throughput sequencing data. bioRxiv.
[59]  Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. bioRxiv.
[60]  Hebenstreit D, et al. (2011) EpiChIP: gene-by-gene quantification of epigenetic modification levels. Nucleic Acids Res 39: e27. doi: 10.1093/nar/gkq1226. pmid:21131282
[61]  Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, et al. (2012) Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649. doi: 10.1093/bioinformatics/bts199. pmid:22543367
[62]  Pond SLK, Frost SDW (2005) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21: 2531–2533. pmid:15713735 doi: 10.1093/bioinformatics/bti320
[63]  Liu H, Hu B, Xu D, Liew FY (2003) CD4+CD25+ regulatory T cells cure murine colitis: the role of IL-10, TGF-beta, and CTLA4. J Immunol 171: 5012–5017. pmid:14607897 doi: 10.4049/jimmunol.171.10.5012

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133