[1] | Lopez D, Kolter R (2010) Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis. FEMS Microbiol Rev 34: 134–149. doi: 10.1111/j.1574-6976.2009.00199.x. pmid:20030732
|
[2] | Veening JW, Smits WK, Kuipers OP (2008) Bistability, epigenetics, and bet-hedging in bacteria. Annu Rev Microbiol 62: 193–210. doi: 10.1146/annurev.micro.62.081307.163002. pmid:18537474
|
[3] | van Sinderen D, Luttinger A, Kong L, Dubnau D, Venema G, et al. (1995) comK encodes the competence transcription factor, the key regulatory protein for competence development in Bacillus subtilis. Mol Microbiol 15: 455–462. pmid:7783616 doi: 10.1111/j.1365-2958.1995.tb02259.x
|
[4] | Hamoen LW, Smits WK, de Jong A, Holsappel S, Kuipers OP (2002) Improving the predictive value of the competence transcription factor (ComK) binding site in Bacillus subtilis using a genomic approach. Nucleic Acids Res 30: 5517–5528. pmid:12490720 doi: 10.1093/nar/gkf698
|
[5] | Ogura M, Yamaguchi H, Kobayashi K, Ogasawara N, Fujita Y, et al. (2002) Whole-genome analysis of genes regulated by the Bacillus subtilis competence transcription factor ComK. J Bacteriol 184: 2344–2351. pmid:11948146 doi: 10.1128/jb.184.9.2344-2351.2002
|
[6] | Berka RM, Hahn J, Albano M, Draskovic I, Persuh M, et al. (2002) Microarray analysis of the Bacillus subtilis K-state: genome-wide expression changes dependent on ComK. Mol Microbiol 43: 1331–1345. pmid:11918817 doi: 10.1046/j.1365-2958.2002.02833.x
|
[7] | Smits WK, Eschevins CC, Susanna KA, Bron S, Kuipers OP, et al. (2005) Stripping Bacillus: ComK auto-stimulation is responsible for the bistable response in competence development. Mol Microbiol 56: 604–614. pmid:15819618 doi: 10.1111/j.1365-2958.2005.04488.x
|
[8] | Maamar H, Dubnau D (2005) Bistability in the Bacillus subtilis K-state (competence) system requires a positive feedback loop. Mol Microbiol 56: 615–624. pmid:15819619 doi: 10.1111/j.1365-2958.2005.04592.x
|
[9] | Leisner M, Stingl K, Radler JO, Maier B (2007) Basal expression rate of comK sets a 'switching-window' into the K-state of Bacillus subtilis. Mol Microbiol 63: 1806–1816. pmid:17367397 doi: 10.1111/j.1365-2958.2007.05628.x
|
[10] | Maamar H, Raj A, Dubnau D (2007) Noise in gene expression determines cell fate in Bacillus subtilis. Science 317: 526–529. pmid:17569828 doi: 10.1126/science.1140818
|
[11] | Ferrell JE Jr. (2002) Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr Opin Cell Biol 14: 140–148. pmid:11891111 doi: 10.1016/s0955-0674(02)00314-9
|
[12] | Losick R, Desplan C (2008) Stochasticity and cell fate. Science 320: 65–68. doi: 10.1126/science.1147888. pmid:18388284
|
[13] | Kearns DB, Losick R (2005) Cell population heterogeneity during growth of Bacillus subtilis. Genes Dev 19: 3083–3094. pmid:16357223 doi: 10.1101/gad.1373905
|
[14] | Veening JW, Igoshin OA, Eijlander RT, Nijland R, Hamoen LW, et al. (2008) Transient heterogeneity in extracellular protease production by Bacillus subtilis. Mol Syst Biol 4: 184. doi: 10.1038/msb.2008.18. pmid:18414485
|
[15] | Veening JW, Stewart EJ, Berngruber TW, Taddei F, Kuipers OP, et al. (2008) Bet-hedging and epigenetic inheritance in bacterial cell development. Proc Natl Acad Sci U S A 105: 4393–4398. doi: 10.1073/pnas.0700463105. pmid:18326026
|
[16] | Diard M, Garcia V, Maier L, Remus-Emsermann MN, Regoes RR, et al. (2013) Stabilization of cooperative virulence by the expression of an avirulent phenotype. Nature 494: 353–356. doi: 10.1038/nature11913. pmid:23426324
|
[17] | Mikeladze-Dvali T, Wernet MF, Pistillo D, Mazzoni EO, Teleman AA, et al. (2005) The growth regulators warts/lats and melted interact in a bistable loop to specify opposite fates in Drosophila R8 photoreceptors. Cell 122: 775–787. pmid:16143107 doi: 10.1016/j.cell.2005.07.026
|
[18] | Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297: 1183–1186. pmid:12183631 doi: 10.1126/science.1070919
|
[19] | Haijema BJ, Hahn J, Haynes J, Dubnau D (2001) A ComGA-dependent checkpoint limits growth during the escape from competence. Mol Microbiol 40: 52–64. pmid:11298275 doi: 10.1046/j.1365-2958.2001.02363.x
|
[20] | Briley K Jr., Prepiak P, Dias MJ, Hahn J, Dubnau D (2011) Maf acts downstream of ComGA to arrest cell division in competent cells of B. subtilis. Mol Microbiol 81: 23–39. doi: 10.1111/j.1365-2958.2011.07695.x. pmid:21564336
|
[21] | Hoa TT, Tortosa P, Albano M, Dubnau D (2002) Rok (YkuW) regulates genetic competence in Bacillus subtilis by directly repressing comK. Mol Microbiol 43: 15–26. pmid:11849533 doi: 10.1046/j.1365-2958.2002.02727.x
|
[22] | Hamoen LW, Kausche D, Marahiel MA, van Sinderen D, Venema G, et al. (2003) The Bacillus subtilis transition state regulator AbrB binds to the -35 promoter region of comK. FEMS Microbiol Lett 218: 299–304. pmid:12586407 doi: 10.1111/j.1574-6968.2003.tb11532.x
|
[23] | Serror P, Sonenshein AL (1996) CodY is required for nutritional repression of Bacillus subtilis genetic competence. J Bacteriol 178: 5910–5915. pmid:8830686
|
[24] | Mirouze N, Desai Y, Raj A, Dubnau D (2012) Spo0A~P imposes a temporal gate for the bimodal expression of competence in Bacillus subtilis. PLoS Genet 8: e1002586. doi: 10.1371/journal.pgen.1002586. pmid:22412392
|
[25] | Hamoen LW, Van Werkhoven AF, Venema G, Dubnau D (2000) The pleiotropic response regulator DegU functions as a priming protein in competence development in Bacillus subtilis. Proc Natl Acad Sci U S A 97: 9246–9251. pmid:10908654 doi: 10.1073/pnas.160010597
|
[26] | Hamoen LW, Venema G, Kuipers OP (2003) Controlling competence in Bacillus subtilis: shared use of regulators. Microbiology 149: 9–17. pmid:12576575 doi: 10.1099/mic.0.26003-0
|
[27] | Smits WK, Hoa TT, Hamoen LW, Kuipers OP, Dubnau D (2007) Antirepression as a second mechanism of transcriptional activation by a minor groove binding protein. Mol Microbiol 64: 368–381. pmid:17493123 doi: 10.1111/j.1365-2958.2007.05662.x
|
[28] | Ogura M, Tanaka T (1996) Bacillus subtilis DegU acts as a positive regulator for comK expression. FEBS Lett 397: 173–176. pmid:8955341 doi: 10.1016/s0014-5793(96)01170-2
|
[29] | Turgay K, Hahn J, Burghoorn J, Dubnau D (1998) Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. Embo J 17: 6730–6738. pmid:9890793 doi: 10.1093/emboj/17.22.6730
|
[30] | Turgay K, Hamoen LW, Venema G, Dubnau D (1997) Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis. Genes Dev 11: 119–128. pmid:9000055 doi: 10.1101/gad.11.1.119
|
[31] | D'Souza C, Nakano MM, Zuber P (1994) Identification of comS, a gene of the srfA operon that regulates the establishment of genetic competence in Bacillus subtilis. Proc Natl Acad Sci U S A 91: 9397–9401. pmid:7937777 doi: 10.1073/pnas.91.20.9397
|
[32] | Hamoen LW, Eshuis H, Jongbloed J, Venema G, van Sinderen D (1995) A small gene, designated comS, located within the coding region of the fourth amino acid-activation domain of srfA, is required for competence development in Bacillus subtilis. Mol Microbiol 15: 55–63. pmid:7752896 doi: 10.1111/j.1365-2958.1995.tb02220.x
|
[33] | van Sinderen D, Venema G (1994) comK acts as an autoregulatory control switch in the signal transduction route to competence in Bacillus subtilis. J Bacteriol 176: 5762–5770. pmid:8083168
|
[34] | Hamoen LW, Van Werkhoven AF, Bijlsma JJ, Dubnau D, Venema G (1998) The competence transcription factor of Bacillus subtilis recognizes short A/T-rich sequences arranged in a unique, flexible pattern along the DNA helix. Genes Dev 12: 1539–1550. pmid:9585513 doi: 10.1101/gad.12.10.1539
|
[35] | Le Breton Y, Mohapatra NP, Haldenwang WG (2006) In vivo random mutagenesis of Bacillus subtilis by use of TnYLB-1, a mariner-based transposon. Appl Environ Microbiol 72: 327–333. pmid:16391061 doi: 10.1128/aem.72.1.327-333.2006
|
[36] | Mirouze N, Prepiak P, Dubnau D (2011) Fluctuations in spo0A transcription control rare developmental transitions in Bacillus subtilis. PLoS Genet 7: e1002048. doi: 10.1371/journal.pgen.1002048. pmid:21552330
|
[37] | Ben-Yehuda S, Rudner DZ, Losick R (2003) RacA, a bacterial protein that anchors chromosomes to the cell poles. Science 299: 532–536. pmid:12493822 doi: 10.1126/science.1079914
|
[38] | Nicolas P, Mader U, Dervyn E, Rochat T, Leduc A, et al. (2012) Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 335: 1103–1106. doi: 10.1126/science.1206848. pmid:22383849
|
[39] | Charoensawan V, Wilson D, Teichmann SA (2010) Genomic repertoires of DNA-binding transcription factors across the tree of life. Nucleic Acids Res 38: 7364–7377. doi: 10.1093/nar/gkq617. pmid:20675356
|
[40] | Fukushima T, Ishikawa S, Yamamoto H, Ogasawara N, Sekiguchi J (2003) Transcriptional, functional and cytochemical analyses of the veg gene in Bacillus subtilis. J Biochem 133: 475–483. pmid:12761295 doi: 10.1093/jb/mvg062
|
[41] | Hahn J, Bylund J, Haines M, Higgins M, Dubnau D (1995) Inactivation of mecA prevents recovery from the competent state and interferes with cell division and the partitioning of nucleoids in Bacillus subtilis. Mol Microbiol 18: 755–767. pmid:8817496 doi: 10.1111/j.1365-2958.1995.mmi_18040755.x
|
[42] | Suel GM, Garcia-Ojalvo J, Liberman LM, Elowitz MB (2006) An excitable gene regulatory circuit induces transient cellular differentiation. Nature 440: 545–550. pmid:16554821 doi: 10.1038/nature04588
|
[43] | Konkol MA, Blair KM, Kearns DB (2013) Plasmid-encoded ComI inhibits competence in the ancestral 3610 strain of Bacillus subtilis. J Bacteriol 195: 4085–4093. doi: 10.1128/JB.00696-13. pmid:23836866
|
[44] | Oussenko IA, Abe T, Ujiie H, Muto A, Bechhofer DH (2005) Participation of 3'-to-5' exoribonucleases in the turnover of Bacillus subtilis mRNA. J Bacteriol 187: 2758–2767. pmid:15805522 doi: 10.1128/jb.187.8.2758-2767.2005
|
[45] | Luttinger A, Hahn J, Dubnau D (1996) Polynucleotide phosphorylase is necessary for competence development in Bacillus subtilis. Mol Microbiol 19: 343–356. pmid:8825779 doi: 10.1046/j.1365-2958.1996.380907.x
|
[46] | Lehnik-Habrink M, Pfortner H, Rempeters L, Pietack N, Herzberg C, et al. (2010) The RNA degradosome in Bacillus subtilis: identification of CshA as the major RNA helicase in the multiprotein complex. Mol Microbiol 77: 958–971. doi: 10.1111/j.1365-2958.2010.07264.x. pmid:20572937
|
[47] | Wurtmann EJ, Ratushny AV, Pan M, Beer KD, Aitchison JD, et al. (2014) An evolutionarily conserved RNase-based mechanism for repression of transcriptional positive autoregulation. Mol Microbiol 92: 369–382. doi: 10.1111/mmi.12564. pmid:24612392
|
[48] | Klumpp S, Zhang Z, Hwa T (2009) Growth rate-dependent global effects on gene expression in bacteria. Cell 139: 1366–1375. doi: 10.1016/j.cell.2009.12.001. pmid:20064380
|
[49] | Anagnostopoulos C, Spizizen J (1961) Requirements for Transformation in Bacillus subtilis. J Bacteriol 81: 741–746. pmid:16561900
|
[50] | Commichau FM, Rothe FM, Herzberg C, Wagner E, Hellwig D, et al. (2009) Novel activities of glycolytic enzymes in Bacillus subtilis: interactions with essential proteins involved in mRNA processing. Mol Cell Proteomics 8: 1350–1360. doi: 10.1074/mcp.M800546-MCP200. pmid:19193632
|
[51] | Newman JA, Hewitt L, Rodrigues C, Solovyova AS, Harwood CR, et al. (2012) Dissection of the network of interactions that links RNA processing with glycolysis in the Bacillus subtilis degradosome. J Mol Biol 416: 121–136. doi: 10.1016/j.jmb.2011.12.024. pmid:22198292
|
[52] | Lehnik-Habrink M, Lewis RJ, Mader U, Stulke J (2012) RNA degradation in Bacillus subtilis: an interplay of essential endo- and exoribonucleases. Mol Microbiol 84: 1005–1017. doi: 10.1111/j.1365-2958.2012.08072.x. pmid:22568516
|
[53] | Nurmohamed S, McKay AR, Robinson CV, Luisi BF (2010) Molecular recognition between Escherichia coli enolase and ribonuclease E. Acta Crystallogr D Biol Crystallogr 66: 1036–1040. doi: 10.1107/S0907444910030015. pmid:20823555
|
[54] | Hahn J, Luttinger A, Dubnau D (1996) Regulatory inputs for the synthesis of ComK, the competence transcription factor of Bacillus subtilis. Mol Microbiol 21: 763–775. pmid:8878039 doi: 10.1046/j.1365-2958.1996.371407.x
|
[55] | Kaltwasser M, Wiegert T, Schumann W (2002) Construction and application of epitope- and green fluorescent protein-tagging integration vectors for Bacillus subtilis. Appl Environ Microbiol 68: 2624–2628. pmid:11976148 doi: 10.1128/aem.68.5.2624-2628.2002
|
[56] | Gamba P, Veening JW, Saunders NJ, Hamoen LW, Daniel RA (2009) Two-step assembly dynamics of the Bacillus subtilis divisome. J Bacteriol 191: 4186–4194. doi: 10.1128/JB.01758-08. pmid:19429628
|
[57] | Murray H, Errington J (2008) Dynamic control of the DNA replication initiation protein DnaA by Soj/ParA. Cell 135: 74–84. doi: 10.1016/j.cell.2008.07.044. pmid:18854156
|
[58] | Vagner V, Dervyn E, Ehrlich SD (1998) A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144 (Pt 11): 3097–3104. pmid:9846745 doi: 10.1099/00221287-144-11-3097
|
[59] | Feucht A, Lewis PJ (2001) Improved plasmid vectors for the production of multiple fluorescent protein fusions in Bacillus subtilis. Gene 264: 289–297. pmid:11250085 doi: 10.1016/s0378-1119(01)00338-9
|
[60] | Morimoto T, Loh PC, Hirai T, Asai K, Kobayashi K, et al. (2002) Six GTP-binding proteins of the Era/Obg family are essential for cell growth in Bacillus subtilis. Microbiology 148: 3539–3552. pmid:12427945
|
[61] | Lewis PJ, Marston AL (1999) GFP vectors for controlled expression and dual labelling of protein fusions in Bacillus subtilis. Gene 227: 101–110. pmid:9931458 doi: 10.1016/s0378-1119(98)00580-0
|
[62] | Itaya M (1992) Construction of a novel tetracycline resistance gene cassette useful as a marker on the Bacillus subtilis chromosome. Biosci Biotechnol Biochem 56: 685–686. pmid:1368214 doi: 10.1271/bbb.56.685
|
[63] | Steinmetz M, Richter R (1994) Plasmids designed to alter the antibiotic resistance expressed by insertion mutations in Bacillus subtilis, through in vivo recombination. Gene 142: 79–83. pmid:8181761 doi: 10.1016/0378-1119(94)90358-1
|
[64] | Kearns DB, Chu F, Branda SS, Kolter R, Losick R (2005) A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 55: 739–749. pmid:15661000 doi: 10.1111/j.1365-2958.2004.04440.x
|
[65] | Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671–675. pmid:22930834 doi: 10.1038/nmeth.2089
|
[66] | Daniel RA, Williams AM, Errington J (1996) A complex four-gene operon containing essential cell division gene pbpB in Bacillus subtilis. J Bacteriol 178: 2343–2350. pmid:8636036
|
[67] | Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
|
[68] | Surdova K, Gamba P, Claessen D, Siersma T, Jonker MJ, et al. (2013) The conserved DNA-binding protein WhiA is involved in cell division in Bacillus subtilis. J Bacteriol 195: 5450–5460. doi: 10.1128/JB.00507-13. pmid:24097947
|
[69] | de Knegt GJ, Bruning O, ten Kate MT, de Jong M, van Belkum A, et al. (2013) Rifampicin-induced transcriptome response in rifampicin-resistant Mycobacterium tuberculosis. Tuberculosis (Edinb) 93: 96–101. doi: 10.1016/j.tube.2012.10.013
|
[70] | Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, et al. (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249–264. pmid:12925520 doi: 10.1093/biostatistics/4.2.249
|
[71] | Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3. doi: 10.2202/1544-6115.1027
|
[72] | Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57: 289–300.
|
[73] | Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408. pmid:11846609 doi: 10.1006/meth.2001.1262
|
[74] | Yuan JS, Reed A, Chen F, Stewart CN Jr. (2006) Statistical analysis of real-time PCR data. BMC Bioinformatics 7: 85. pmid:16504059
|
[75] | Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, et al. (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39: D561–568. doi: 10.1093/nar/gkq973. pmid:21045058
|