全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2015 

Independent Neuronal Origin of Seizures and Behavioral Comorbidities in an Animal Model of a Severe Childhood Genetic Epileptic Encephalopathy

DOI: 10.1371/journal.pgen.1005347

Full-Text   Cite this paper   Add to My Lib

Abstract:

The childhood epileptic encephalopathies (EE’s) are seizure disorders that broadly impact development including cognitive, sensory and motor progress with severe consequences and comorbidities. Recently, mutations in DNM1 (dynamin 1) have been implicated in two EE syndromes, Lennox-Gastaut Syndrome and Infantile Spasms. Dnm1 encodes dynamin 1, a large multimeric GTPase necessary for activity-dependent membrane recycling in neurons, including synaptic vesicle endocytosis. Dnm1Ftfl or “fitful” mice carry a spontaneous mutation in the mouse ortholog of DNM1 and recapitulate many of the disease features associated with human DNM1 patients, providing a relevant disease model of human EE’s. In order to examine the cellular etiology of seizures and behavioral and neurological comorbidities, we engineered a conditional Dnm1Ftfl mouse model of DNM1 EE. Observations of Dnm1Ftfl/flox mice in combination with various neuronal subpopulation specific cre strains demonstrate unique seizure phenotypes and clear separation of major neurobehavioral comorbidities from severe seizures associated with the germline model. This demonstration of pleiotropy suggests that treating seizures per se may not prevent severe comorbidity observed in EE associated with dynamin-1 mutations, and is likely to have implications for other genetic forms of EE.

References

[1]  EuroEPINOMIC-RES Consortium EPGP, Epi4K Consortium. De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. Am J Hum Genet. 2014;95: 360–370. doi: 10.1016/j.ajhg.2014.08.013. pmid:25262651
[2]  Deciphering Developmental Disorders Study. Large-scale discovery of novel genetic causes of developmental disorders. Nature. 2015;519: 223–228. doi: 10.1038/nature14135. pmid:25533962
[3]  Allen AS, Berkovic SF, Cossette P, Delanty N, Dlugos D, Eichler EE, et al. De novo mutations in epileptic encephalopathies. Nature. 2013;501: 217–221. doi: 10.1038/nature12439. pmid:23934111
[4]  Dhindsa RS, Bradrick SS, Yao XY, Heinzen EL, Petrovski S, Krueger BJ, et al. Epileptic encephalopathy causing DNM1 mutations impair synaptic vesicle endocytosis. Neurol Genet. 2015;1: e4. doi: 10.1212/01.nxg.0000464295.65736.da
[5]  Boumil RM, Letts VA, Roberts MC, Lenz C, Mahaffey CL, Zhang ZW, et al. A missense mutation in a highly conserved alternate exon of dynamin-1 causes epilepsy in fitful mice. PLoS Genet. 2010;6. doi: 10.1371/journal.pgen.1001046
[6]  Ferguson SM, Brasnjo G, Hayashi M, Wolfel M, Collesi C, Giovedi S, et al. A selective activity-dependent requirement for dynamin 1 in synaptic vesicle endocytosis. Science. 2007;316: 570–574. pmid:17463283 doi: 10.1126/science.1140621
[7]  Ferguson SM, Raimondi A, Paradise S, Shen H, Mesaki K, Ferguson A, et al. Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits. Dev Cell. 2009;17: 811–822. doi: 10.1016/j.devcel.2009.11.005. pmid:20059951
[8]  van Rijckevorsel K. Cognitive problems related to epilepsy syndromes, especially malignant epilepsies. Seizure. 2006;15: 227–234. pmid:16563807 doi: 10.1016/j.seizure.2006.02.019
[9]  Wagner GP, Zhang J. The pleiotropic structure of the genotype-phenotype map: the evolvability of complex organisms. Nat Rev Genet. 2011;12: 204–213. doi: 10.1038/nrg2949. pmid:21331091
[10]  Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nature Neurosci. 2010;13: 133–140. doi: 10.1038/nn.2467. pmid:20023653
[11]  Taniguchi H, He M, Wu P, Kim S, Paik R, Sugino K, et al. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron. 2011;71: 995–1013. doi: 10.1016/j.neuron.2011.07.026. pmid:21943598
[12]  Gorski JA, Talley T, Qiu M, Puelles L, Rubenstein JL, Jones KR. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J Neurosci. 2002;22: 6309–6314. pmid:12151506
[13]  Hippenmeyer S, Vrieseling E, Sigrist M, Portmann T, Laengle C, Ladle DR, et al. A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol. 2005;3: e159. pmid:15836427 doi: 10.1371/journal.pbio.0030159
[14]  Potter GB, Petryniak MA, Shevchenko E, McKinsey GL, Ekker M, Rubenstein JL. Generation of Cre-transgenic mice using Dlx1/Dlx2 enhancers and their characterization in GABAergic interneurons. Mol Cell Neurosci. 2009;40: 167–186. doi: 10.1016/j.mcn.2008.10.003. pmid:19026749
[15]  Bartos M, Vida I, Jonas P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nature Rev Neurosci. 2007;8: 45–56. doi: 10.1038/nrn2044
[16]  Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C. Interneurons of the neocortical inhibitory system. Nature Rev Neurosci. 2004;5: 793–807. doi: 10.1038/nrn1519
[17]  McBain CJ, Fisahn A. Interneurons unbound. Nature Rev Neurosci. 2001;2: 11–23. doi: 10.1038/35049047
[18]  Dutton SB, Makinson CD, Papale LA, Shankar A, Balakrishnan B, Nakazawa K, et al. Preferential inactivation of Scn1a in parvalbumin interneurons increases seizure susceptibility. Neurobiol Dis. 2012;49C: 211–220. doi: 10.1016/j.nbd.2012.08.012
[19]  Rudy B, Fishell G, Lee S, Hjerling-Leffler J. Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev Neurobiol. 2010;71: 45–61. doi: 10.1002/dneu.20853
[20]  Tolstykh GP, Cavazos JE. Potential mechanisms of sudden unexpected death in epilepsy. Epilepsy Behav. 2013;26: 410–414. doi: 10.1016/j.yebeh.2012.09.017. pmid:23305781
[21]  Monory K, Massa F, Egertova M, Eder M, Blaudzun H, Westenbroek R, et al. The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron. 2006;51: 455–466. pmid:16908411 doi: 10.1016/j.neuron.2006.07.006
[22]  Hayashi M, Raimondi A, O'Toole E, Paradise S, Collesi C, Cremona O, et al. Cell- and stimulus-dependent heterogeneity of synaptic vesicle endocytic recycling mechanisms revealed by studies of dynamin 1-null neurons. PNAS. 2008;105: 2175–2180. doi: 10.1073/pnas.0712171105. pmid:18250322
[23]  Brooks-Kayal A. Molecular mechanisms of cognitive and behavioral comorbidities of epilepsy in children. Epilepsia. 2011;52 Suppl 1: 13–20. doi: 10.1111/j.1528-1167.2010.02906.x. pmid:21214535
[24]  Nieh SE, Sherr EH. Epileptic encephalopathies: new genes and new pathways. Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics. 2014;11: 796–806. doi: 10.1007/s13311-014-0301-2
[25]  Pierce K, Courchesne E. Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autism. Biol Psychiatry. 2001;49: 655–664. pmid:11313033 doi: 10.1016/s0006-3223(00)01008-8
[26]  World Health Organization (1992) The ICD-10 Classification of Mental and Behavioural Disorders. Geneva, Switzerland.
[27]  American Psychiatric Association (1994) Diagnostic and Statistical Manual of Mental Disorders. Washington D.C.
[28]  Ogiwara I, Iwasato T, Miyamoto H, Iwata R, Yamagata T, Mazaki E, et al. Nav1.1 haploinsufficiency in excitatory neurons ameliorates seizure-associated sudden death in a mouse model of Dravet syndrome. Hum Mol Gen. 2013;22: 4784–4804. doi: 10.1093/hmg/ddt331. pmid:23922229
[29]  Youssoufian H, Pyeritz RE. Mechanisms and consequences of somatic mosaicism in humans. Nat Rev Genet. 2002;3: 748–758. pmid:12360233 doi: 10.1038/nrg906
[30]  Mayorga AJ, Lucki I. Limitations on the use of the C57BL/6 mouse in the tail suspension test. Psychopharmacol (Berl). 2001;155: 110–112. doi: 10.1007/s002130100687

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133