[1] | Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, et al. (2006) DNA repair and mutagenesis. Washington, D. C.: ASM Press.
|
[2] | Sale JE, Lehmann AR, Woodgate R (2012) Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nat Rev Mol Cell Biol 13: 141–152. doi: 10.1038/nrm3289. pmid:22358330
|
[3] | Sutton MD (2010) Coordinating DNA polymerase traffic during high and low fidelity synthesis. Biochim Biophys Acta 1804: 1167–1179. doi: 10.1016/j.bbapap.2009.06.010. pmid:19540941
|
[4] | Sanders LH, Devadoss B, Raja GV, O'Connor J, Su S, et al. (2011) Epistatic roles for Pseudomonas aeruginosa MutS and DinB (DNA Pol IV) in coping with reactive oxygen species-induced DNA damage. PLoS One 6: e18824. doi: 10.1371/journal.pone.0018824. pmid:21533111
|
[5] | Petrosino JF, Galhardo RS, Morales LD, Rosenberg SM (2009) Stress-induced beta-lactam antibiotic resistance mutation and sequences of stationary-phase mutations in the Escherichia coli chromosome. J Bacteriol 191: 5881–5889. doi: 10.1128/JB.00732-09. pmid:19648247
|
[6] | Norton MD, Spilkia AJ, Godoy VG (2013) Antibiotic resistance acquired through a DNA damage-inducible response in Acinetobacter baumannii. J Bacteriol 195: 1335–1345. doi: 10.1128/JB.02176-12. pmid:23316046
|
[7] | Moyano AJ, Lujan AM, Argarana CE, Smania AM (2007) MutS deficiency and activity of the error-prone DNA polymerase IV are crucial for determining mucA as the main target for mucoid conversion in Pseudomonas aeruginosa. Mol Microbiol 64: 547–559. pmid:17493134 doi: 10.1111/j.1365-2958.2007.05675.x
|
[8] | Waters LS, Minesinger BK, Wiltrout ME, D'Souza S, Woodruff RV, et al. (2009) Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol Mol Biol Rev 73: 134–154. doi: 10.1128/MMBR.00034-08. pmid:19258535
|
[9] | Stallons LJ, McGregor WG (2010) Translesion synthesis polymerases in the prevention and promotion of carcinogenesis. J Nucleic Acids 2010. doi: 10.4061/2010/643857
|
[10] | Pillaire MJ, Selves J, Gordien K, Gourraud PA, Gentil C, et al. (2010) A 'DNA replication' signature of progression and negative outcome in colorectal cancer. Oncogene 29: 876–887. doi: 10.1038/onc.2009.378. pmid:19901968
|
[11] | Betous R, Rey L, Wang G, Pillaire MJ, Puget N, et al. (2009) Role of TLS DNA polymerases eta and kappa in processing naturally occurring structured DNA in human cells. Mol Carcinog 48: 369–378. doi: 10.1002/mc.20509. pmid:19117014
|
[12] | Kath JE, Jergic S, Heltzel JM, Jacob DT, Dixon NE, et al. (2014) Polymerase exchange on single DNA molecules reveals processivity clamp control of translesion synthesis. Proc Natl Acad Sci U S A 111: 7647–7652. doi: 10.1073/pnas.1321076111. pmid:24825884
|
[13] | Indiani C, Langston LD, Yurieva O, Goodman MF, O'Donnell M (2009) Translesion DNA polymerases remodel the replisome and alter the speed of the replicative helicase. Proc Natl Acad Sci U S A 106: 6031–6038. doi: 10.1073/pnas.0901403106. pmid:19279203
|
[14] | Tan KW, Pham TM, Furukohri A, Maki H, Akiyama MT (2015) Recombinase and translesion DNA polymerase decrease the speed of replication fork progression during the DNA damage response in Escherichia coli cells. Nucleic Acids Res 43: 1714–1725. doi: 10.1093/nar/gkv044. pmid:25628359
|
[15] | Indiani C, McInerney P, Georgescu R, Goodman MF, O'Donnell M (2005) A sliding-clamp toolbelt binds high- and low-fidelity DNA polymerases simultaneously. Mol Cell 19: 805–815. pmid:16168375 doi: 10.1016/j.molcel.2005.08.011
|
[16] | Furukohri A, Goodman MF, Maki H (2008) A dynamic polymerase exchange with Escherichia coli DNA polymerase IV replacing DNA polymerase III on the sliding clamp. J Biol Chem 283: 11260–11269. doi: 10.1074/jbc.M709689200. pmid:18308729
|
[17] | Heltzel JM, Maul RW, Scouten Ponticelli SK, Sutton MD (2009) A model for DNA polymerase switching involving a single cleft and the rim of the sliding clamp. Proc Natl Acad Sci U S A 106: 12664–12669. doi: 10.1073/pnas.0903460106. pmid:19617571
|
[18] | Gabbai CB, Yeeles JTP, Marians KJ (2014) Replisome-mediated translesion synthesis and leading strand template lesion skipping are competing bypass mechanisms. J Biol Chem 289: 32811–32823. doi: 10.1074/jbc.M114.613257. pmid:25301949
|
[19] | Kannouche PL, Wing J, Lehmann AR (2004) Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol Cell 14: 491–500. pmid:15149598 doi: 10.1016/s1097-2765(04)00259-x
|
[20] | Ikeda M, Furukohri A, Philippin G, Loechler E, Akiyama MT, et al. (2014) DNA polymerase IV mediates efficient and quick recovery of replication forks stalled at N2-dG adducts. Nucleic Acids Res 42: 8461–8472. doi: 10.1093/nar/gku547. pmid:24957605
|
[21] | Sutton MD, Opperman T, Walker GC (1999) The Escherichia coli SOS mutagenesis proteins UmuD and UmuD' interact physically with the replicative DNA polymerase. Proc Natl Acad Sci U S A 96: 12373–12378. pmid:10535929 doi: 10.1073/pnas.96.22.12373
|
[22] | Sutton MD, Narumi I, Walker GC (2002) Posttranslational modification of the umuD-encoded subunit of Escherichia coli DNA polymerase V regulates its interactions with the beta processivity clamp. Proc Natl Acad Sci U S A 99: 5307–5312. pmid:11959982 doi: 10.1073/pnas.082322099
|
[23] | Kannouche P, Fernandez de Henestrosa AR, Coull B, Vidal AE, Gray C, et al. (2002) Localization of DNA polymerases eta and iota to the replication machinery is tightly co-ordinated in human cells. EMBO J 21: 6246–6256. pmid:12426396 doi: 10.1093/emboj/cdf618
|
[24] | Okazaki R, Arisawa M, Sugino A (1971) Slow joining of newly replicated DNA chains in DNA polymerase I-deficient Escherichia coli mutants. Proc Natl Acad Sci U S A 68: 2954–2957. pmid:4943548 doi: 10.1073/pnas.68.12.2954
|
[25] | McHenry CS (2011) Bacterial replicases and related polymerases. Curr Opin Chem Biol 15: 587–594. doi: 10.1016/j.cbpa.2011.07.018. pmid:21855395
|
[26] | O'Donnell M, Langston L, Stillman B (2013) Principles and concepts of DNA replication in bacteria, archaea, and eukarya. Cold Spring Harb Perspect Biol 5. doi: 10.1101/cshperspect.a010108
|
[27] | Dalrymple BP, Kongsuwan K, Wijffels G, Dixon NE, Jennings PA (2001) A universal protein–protein interaction motif in the eubacterial DNA replication and repair systems. Proc Natl Acad Sci U S A 98: 11627–11632. pmid:11573000 doi: 10.1073/pnas.191384398
|
[28] | Becherel OJ, Fuchs RP, Wagner J (2002) Pivotal role of the beta-clamp in translesion DNA synthesis and mutagenesis in E. coli cells. DNA Repair (Amst) 1: 703–708. doi: 10.1016/s1568-7864(02)00106-4
|
[29] | Dohrmann PR, McHenry CS (2005) A bipartite polymerase-processivity factor interaction: only the internal beta binding site of the alpha subunit is required for processive replication by the DNA polymerase III holoenzyme. J Mol Biol 350: 228–239. pmid:15923012 doi: 10.1016/j.jmb.2005.04.065
|
[30] | Maul RW, Sanders LH, Lim JB, Benitez R, Sutton MD (2007) Role of Escherichia coli DNA polymerase I in conferring viability upon the dnaN159 mutant strain. J Bacteriol 189: 4688–4695. pmid:17449610 doi: 10.1128/jb.00476-07
|
[31] | Lopez de Saro FJ, Georgescu RE, Goodman MF, O'Donnell M (2003) Competitive processivity-clamp usage by DNA polymerases during DNA replication and repair. EMBO J 22: 6408–6418. pmid:14633999 doi: 10.1093/emboj/cdg603
|
[32] | Bunting KA, Roe SM, Pearl LH (2003) Structural basis for recruitment of translesion DNA polymerase Pol IV/DinB to the beta-clamp. EMBO J 22: 5883–5892. pmid:14592985 doi: 10.1093/emboj/cdg568
|
[33] | Heltzel JM, Scouten Ponticelli SK, Sanders LH, Duzen JM, Cody V, et al. (2009) Sliding clamp-DNA interactions are required for viability and contribute to DNA polymerase management in Escherichia coli. J Mol Biol 381: 74–91. doi: 10.1016/j.jmb.2009.01.050
|
[34] | Maul RW, Ponticelli SK, Duzen JM, Sutton MD (2007) Differential binding of Escherichia coli DNA polymerases to the beta-sliding clamp. Mol Microbiol 65: 811–827. pmid:17635192 doi: 10.1111/j.1365-2958.2007.05828.x
|
[35] | Sutton MD, Duzen JM (2006) Specific amino acid residues in the beta sliding clamp establish a DNA polymerase usage hierarchy in Escherichia coli. DNA Repair (Amst) 5: 312–323. doi: 10.1016/j.dnarep.2005.10.011
|
[36] | Scouten Ponticelli SK, Duzen JM, Sutton MD (2009) Contributions of the individual hydrophobic clefts of the Escherichia coli beta sliding clamp to clamp loading, DNA replication and clamp recycling. Nucleic Acids Res 37: 2796–2809. doi: 10.1093/nar/gkp128. pmid:19279187
|
[37] | Beuning PJ, Sawicka D, Barsky D, Walker GC (2006) Two processivity clamp interactions differentially alter the dual activities of UmuC. Mol Microbiol 59: 460–474. pmid:16390442 doi: 10.1111/j.1365-2958.2005.04959.x
|
[38] | Heltzel JM, Maul RW, Wolff DW, Sutton MD (2012) Escherichia coli DNA polymerase IV (Pol IV), but not Pol II, dynamically switches with a stalled Pol III* replicase. J Bacteriol 194: 3589–3600. doi: 10.1128/JB.00520-12. pmid:22544274
|
[39] | Yeeles JT, Marians KJ (2011) The Escherichia coli replisome is inherently DNA damage tolerant. Science 334: 235–238. doi: 10.1126/science.1209111. pmid:21998391
|
[40] | Jarosz DF, Godoy VG, Delaney JC, Essigmann JM, Walker GC (2006) A single amino acid governs enhanced activity of DinB DNA polymerases on damaged templates. Nature 439: 225–228. pmid:16407906 doi: 10.1038/nature04318
|
[41] | Bjedov I, Dasgupta CN, Slade D, Le Blastier S, Selva M, et al. (2007) Involvement of Escherichia coli DNA polymerase IV in tolerance of cytotoxic alkylating DNA lesions in vivo. Genetics 176: 1431–1440. pmid:17483416 doi: 10.1534/genetics.107.072405
|
[42] | Baxter JC, Sutton MD (2012) Evidence for roles of the Escherichia coli Hda protein beyond regulatory inactivation of DnaA. Mol Microbiol 85: 648–668. doi: 10.1111/j.1365-2958.2012.08129.x. pmid:22716942
|
[43] | Ona KR, Courcelle CT, Courcelle J (2009) Nucleotide Excision Repair Is a Predominant Mechanism for Processing Nitrofurazone-Induced DNA Damage in Escherichia coli. J Bacteriol 191: 4959–4965. doi: 10.1128/JB.00495-09. pmid:19465649
|
[44] | Maul RW, Sutton MD (2005) Roles of the Escherichia coli RecA protein and the global SOS response in effecting DNA polymerase selection in vivo. J Bacteriol 187: 7607–7618. pmid:16267285 doi: 10.1128/jb.187.22.7607-7618.2005
|
[45] | Uchida K, Furukohri A, Shinozaki Y, Mori T, Ogawara D, et al. (2008) Overproduction of Escherichia coli DNA polymerase DinB (Pol IV) inhibits replication fork progression and is lethal. Mol Microbiol 70. doi: 10.1111/j.1365-2958.2008.06423.x
|
[46] | Pillaire M-J, Bétous R, Hoffmann J-S (2014) Role of DNA polymerase κ in the maintenance of genomic stability. Molecular & Cellular Oncology 1: e29902. doi: 10.4161/mco.29902
|
[47] | Foti JJ, Devadoss B, Winkler JA, Collins JJ, Walker GC (2012) Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science 336: 315–319. doi: 10.1126/science.1219192. pmid:22517853
|
[48] | Sutton MD (2004) The Escherichia coli dnaN159 mutant displays altered DNA polymerase usage and chronic SOS induction. J Bacteriol 186: 6738–6748. pmid:15466025 doi: 10.1128/jb.186.20.6738-6748.2004
|
[49] | Sutton MD, Duzen JM, Maul RW (2005) Mutant forms of the Escherichia coli beta sliding clamp that distinguish between its roles in replication and DNA polymerase V-dependent translesion DNA synthesis. Mol Microbiol 55: 1751–1766. pmid:15752198 doi: 10.1111/j.1365-2958.2005.04500.x
|
[50] | Kim SR, Maenhaut-Michel G, Yamada M, Yamamoto Y, Matsui K, et al. (1997) Multiple pathways for SOS-induced mutagenesis in Escherichia coli: an overexpression of dinB/dinP results in strongly enhancing mutagenesis in the absence of any exogenous treatment to damage DNA. Proc Natl Acad Sci U S A 94: 13792–13797. pmid:9391106 doi: 10.1073/pnas.94.25.13792
|
[51] | Cupples CG, Cabrera M, Cruz C, Miller JH (1990) A set of lacZ mutations in Escherichia coli that allow rapid detection of specific frameshift mutations. Genetics 125: 275–280. pmid:2199309
|
[52] | Cupples CG, Miller JH (1989) A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions. Proc Natl Acad Sci U S A 86: 5345–5349. pmid:2501784 doi: 10.1073/pnas.86.14.5345
|
[53] | Sharma A, Kottur J, Narayanan N, Nair DT (2013) A strategically located serine residue is critical for the mutator activity of DNA polymerase IV from Escherichia coli. Nucleic Acids Res 41: 5104–5114. doi: 10.1093/nar/gkt146. pmid:23525461
|
[54] | Boudsocq F, Kokoska RJ, Plosky BS, Vaisman A, Ling H, et al. (2004) Investigating the role of the little finger domain of Y-family DNA polymerases in low fidelity synthesis and translesion replication. J Biol Chem 279: 32932–32940. pmid:15155753 doi: 10.1074/jbc.m405249200
|
[55] | Ling H, Boudsocq F, Woodgate R, Yang W (2001) Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell 107: 91–102. pmid:11595188 doi: 10.1016/s0092-8674(01)00515-3
|
[56] | Sanders LH, Rockel A, Lu H, Wozniak DJ, Sutton MD (2006) Role of Pseudomonas aeruginosa dinB-encoded DNA polymerase IV in mutagenesis. J Bacteriol 188: 8573–8585. pmid:17041045 doi: 10.1128/jb.01481-06
|
[57] | Wagner J, Gruz P, Kim SR, Yamada M, Matsui K, et al. (1999) The dinB gene encodes a novel E. coli DNA polymerase, DNA pol IV, involved in mutagenesis. Mol Cell 4: 281–286. pmid:10488344 doi: 10.1016/s1097-2765(00)80376-7
|
[58] | Nieminuszczy J, Sikora A, Wrzesinski M, Janion C, Grzesiuk E (2006) AlkB dioxygenase in preventing MMS-induced mutagenesis in Escherichia coli: effect of Pol V and AlkA proteins. DNA Repair (Amst) 5: 181–188. doi: 10.1016/j.dnarep.2005.09.007
|
[59] | Plosky BS, Frank EG, Berry DA, Vennall GP, McDonald JP, et al. (2008) Eukaryotic Y-family polymerases bypass a 3-methyl-2'-deoxyadenosine analog in vitro and methyl methanesulfonate-induced DNA damage in vivo. Nucleic Acids Res 36: 2152–2162. doi: 10.1093/nar/gkn058. pmid:18281311
|
[60] | Lee MC, Franco M, Vargas DM, Hudman DA, White SJ, et al. (2014) A ΔdinB mutation that sensitizes Escherichia coli to the lethal effects of UV- and X-radiation. Mutat Res 763–764: 19–27. doi: 10.1016/j.mrfmmm.2014.03.003. pmid:24657250
|
[61] | Benson RW, Cafarelli TM, Rands TJ, Lin I, Godoy VG (2014) Selection of dinB alleles suppressing survival loss upon dinB overexpression in Escherichia coli. J Bacteriol 196: 3023–3035. doi: 10.1128/JB.01782-14. pmid:24914188
|
[62] | Wagner J, Etienne H, Fuchs RP, Cordonnier A, Burnouf D (2009) Distinct beta-clamp interactions govern the activities of the Y family PolIV DNA polymerase. Mol Microbiol 74: 1143–1151. doi: 10.1111/j.1365-2958.2009.06920.x. pmid:19843218
|
[63] | Cafarelli TM, Rands TJ, Godoy VG (2014) The DinB*RecA complex of Escherichia coli mediates an efficient and high-fidelity response to ubiquitous alkylation lesions. Environ Mol Mutagen 55: 92–102. doi: 10.1002/em.21826. pmid:24243543
|
[64] | Godoy VG, Jarosz DF, Simon SM, Abyzov A, Ilyin V, et al. (2007) UmuD and RecA directly modulate the mutagenic potential of the Y family DNA polymerase DinB. Mol Cell 28: 1058–1070. pmid:18158902 doi: 10.1016/j.molcel.2007.10.025
|
[65] | Cafarelli TM, Rands TJ, Benson RW, Rudnicki PA, Lin I, et al. (2013) A single residue unique to DinB-like proteins limits formation of the polymerase IV multiprotein complex in Escherichia coli. J Bacteriol 195: 1179–1193. doi: 10.1128/JB.01349-12. pmid:23292773
|
[66] | Chaurasiya KR, Ruslie C, Silva MC, Voortman L, Nevin P, et al. (2013) Polymerase manager protein UmuD directly regulates Escherichia coli DNA polymerase III alpha binding to ssDNA. Nucleic Acids Res 41: 8959–8968. doi: 10.1093/nar/gkt648. pmid:23901012
|
[67] | Sutton MD, Duzen JM, Scouten Ponticelli SK (2010) A single hydrophobic cleft in the Escherichia coli processivity clamp is sufficient to support cell viability and DNA damage-induced mutagenesis in vivo. BMC Mol Biol 11: 102. doi: 10.1186/1471-2199-11-102. pmid:21190558
|
[68] | Toste Rego A, Holding AN, Kent H, Lamers MH (2013) Architecture of the Pol III-clamp-exonuclease complex reveals key roles of the exonuclease subunit in processive DNA synthesis and repair. EMBO J 32: 1334–1343. doi: 10.1038/emboj.2013.68. pmid:23549287
|
[69] | Jergic S, Horan NP, Elshenawy MM, Mason CE, Urathamakul T, et al. (2013) A direct proofreader-clamp interaction stabilizes the Pol III replicase in the polymerization mode. EMBO J 32: 1322–1333. doi: 10.1038/emboj.2012.347. pmid:23435564
|
[70] | Kim SR, Matsui K, Yamada M, Gruz P, Nohmi T (2001) Roles of chromosomal and episomal dinB genes encoding DNA pol IV in targeted and untargeted mutagenesis in Escherichia coli. Mol Genet Genomics 266: 207–215. pmid:11683261 doi: 10.1007/s004380100541
|
[71] | Kim S, Dallmann HG, McHenry CS, Marians KJ (1996) Coupling of a replicative polymerase and helicase: a tau-DnaB interaction mediates rapid replication fork movement. Cell 84: 643–650. pmid:8598050 doi: 10.1016/s0092-8674(00)81039-9
|
[72] | Georgescu RE, Kim SS, Yurieva O, Kuriyan J, Kong XP, et al. (2008) Structure of a sliding clamp on DNA. Cell 132: 43–54. doi: 10.1016/j.cell.2007.11.045. pmid:18191219
|
[73] | Miller JH (1999) A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria: Cold Spring Harbor Press.
|
[74] | Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97: 6640–6645. pmid:10829079 doi: 10.1073/pnas.120163297
|
[75] | Benson RW, Cafarelli TM, Godoy VG (2011) SOE-LRed: A simple and time-efficient method to localize genes with point mutations onto the Escherichia coli chromosome. J Microbiol Methods 84: 479–481. doi: 10.1016/j.mimet.2010.12.020. pmid:21185880
|
[76] | Lusetti SL, Hobbs MD, Stohl EA, Chitteni-Pattu S, Inman RB, et al. (2006) The RecF protein antagonizes RecX function via direct interaction. Mol Cell 21: 41–50. pmid:16387652 doi: 10.1016/j.molcel.2005.11.011
|
[77] | Duzen JM, Walker GC, Sutton MD (2004) Identification of specific amino acid residues in the E. coli beta processivity clamp involved in interactions with DNA polymerase III, UmuD and UmuD'. DNA Repair (Amst) 3: 301–312. doi: 10.1016/j.dnarep.2003.11.008
|
[78] | Frey MW, Nossal NG, Capson TL, Benkovic SJ (1993) Construction and characterization of a bacteriophage T4 DNA polymerase deficient in 3'—>5' exonuclease activity. Proc Natl Acad Sci U S A 90: 2579–2583. pmid:8464864 doi: 10.1073/pnas.90.7.2579
|
[79] | Capson TL, Peliska JA, Kaboord BF, Frey MW, Lively C, et al. (1992) Kinetic characterization of the polymerase and exonuclease activities of the gene 43 protein of bacteriophage T4. Biochemistry 31: 10984–10994. pmid:1332748 doi: 10.1021/bi00160a007
|
[80] | Oakley AJ, Prosselkov P, Wijffels G, Beck JL, Wilce MC, et al. (2003) Flexibility revealed by the 1.85 A crystal structure of the beta sliding-clamp subunit of Escherichia coli DNA polymerase III. Acta Crystallogr D Biol Crystallogr 59: 1192–1199. pmid:12832762 doi: 10.1107/s0907444903009958
|
[81] | Wijffels G, Dalrymple BP, Prosselkov P, Kongsuwan K, Epa VC, et al. (2004) Inhibition of protein interactions with the beta 2 sliding clamp of Escherichia coli DNA polymerase III by peptides from beta 2-binding proteins. Biochemistry 43: 5661–5671. pmid:15134440 doi: 10.1021/bi036229j
|
[82] | Hamdan S, Bulloch EM, Thompson PR, Beck JL, Yang JY, et al. (2002) Hydrolysis of the 5'-p-nitrophenyl ester of TMP by the proofreading exonuclease (epsilon) subunit of Escherichia coli DNA polymerase III. Biochemistry 41: 5266–5275. pmid:11955076 doi: 10.1021/bi0159480
|
[83] | Tanner NA, Hamdan SM, Jergic S, Loscha KV, Schaeffer PM, et al. (2008) Single-molecule studies of fork dynamics in Escherichia coli DNA replication. Nat Struct Mol Biol 15: 170–176. doi: 10.1038/nsmb.1381. pmid:18223657
|
[84] | Ozawa K, Horan NP, Robinson A, Yagi H, Hill FR, et al. (2013) Proofreading exonuclease on a tether: the complex between the E. coli DNA polymerase III subunits alpha, epsilon, theta and beta reveals a highly flexible arrangement of the proofreading domain. Nucleic Acids Res 41: 5354–5367. doi: 10.1093/nar/gkt162. pmid:23580545
|
[85] | Ho C, Kulaeva OI, Levine AS, Woodgate R (1993) A rapid method for cloning mutagenic DNA repair genes: isolation of umu-complementing genes from multidrug resistance plasmids R391, R446b, and R471a. J Bacteriol 175: 5411–5419. pmid:8366028
|
[86] | Wang RF, Kushner SR (1991) Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene 100: 195–199. pmid:2055470 doi: 10.1016/0378-1119(91)90366-j
|