Genome-wide association studies with metabolic traits (mGWAS) uncovered many genetic variants that influence human metabolism. These genetically influenced metabotypes (GIMs) contribute to our metabolic individuality, our capacity to respond to environmental challenges, and our susceptibility to specific diseases. While metabolic homeostasis in blood is a well investigated topic in large mGWAS with over 150 known loci, metabolic detoxification through urinary excretion has only been addressed by few small mGWAS with only 11 associated loci so far. Here we report the largest mGWAS to date, combining targeted and non-targeted 1H NMR analysis of urine samples from 3,861 participants of the SHIP-0 cohort and 1,691 subjects of the KORA F4 cohort. We identified and replicated 22 loci with significant associations with urinary traits, 15 of which are new (HIBCH, CPS1, AGXT, XYLB, TKT, ETNPPL, SLC6A19, DMGDH, SLC36A2, GLDC, SLC6A13, ACSM3, SLC5A11, PNMT, SLC13A3). Two-thirds of the urinary loci also have a metabolite association in blood. For all but one of the 6 loci where significant associations target the same metabolite in blood and urine, the genetic effects have the same direction in both fluids. In contrast, for the SLC5A11 locus, we found increased levels of myo-inositol in urine whereas mGWAS in blood reported decreased levels for the same genetic variant. This might indicate less effective re-absorption of myo-inositol in the kidneys of carriers. In summary, our study more than doubles the number of known loci that influence urinary phenotypes. It thus allows novel insights into the relationship between blood homeostasis and its regulation through excretion. The newly discovered loci also include variants previously linked to chronic kidney disease (CPS1, SLC6A13), pulmonary hypertension (CPS1), and ischemic stroke (XYLB). By establishing connections from gene to disease via metabolic traits our results provide novel hypotheses about molecular mechanisms involved in the etiology of diseases.
References
[1]
Gieger C, Geistlinger L, Altmaier E, Hrabě de Angelis M, Kronenberg F, Meitinger T, et al. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genetics. 2008 Nov;4(11):e1000282. doi: 10.1371/journal.pgen.1000282. pmid:19043545
[2]
Hicks AA, Pramstaller PP, Johansson A, Vitart V, Rudan I, Ugocsai P, et al. Genetic determinants of circulating sphingolipid concentrations in European populations. PLoS Genetics. 2009 Oct;5(10):e1000672. doi: 10.1371/journal.pgen.1000672. pmid:19798445
[3]
Tanaka T, Shen J, Abecasis GR, Kisialiou A, Ordovas JM, Guralnik JM, et al. Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI Study. PLoS Genetics. 2009 Jan;5(1):e1000338. doi: 10.1371/journal.pgen.1000338. pmid:19148276
[4]
Illig T, Gieger C, Zhai G, R?misch-Margl W, Wang-Sattler R, Prehn C, et al. A genome-wide perspective of genetic variation in human metabolism. Nature Genetics. 2010 Feb;42(2):137–41. doi: 10.1038/ng.507. pmid:20037589
[5]
Nicholson G, Rantalainen M, Li JV, Maher AD, Malmodin D, Ahmadi KR, et al. A genome-wide metabolic QTL analysis in Europeans implicates two loci shaped by recent positive selection. PLoS Genetics. 2011 Sep;7(9):e1002270. doi: 10.1371/journal.pgen.1002270. pmid:21931564
[6]
Suhre K, Shin SY, Petersen AK, Mohney RP, Meredith D, W?gele B, et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature. 2011 Sep 1;477(7362):54–60. doi: 10.1038/nature10354. pmid:21886157
[7]
Kettunen J, Tukiainen T, Sarin AP, Ortega-Alonso A, Tikkanen E, Lyytik?inen LP, et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nature Genetics. 2012 Mar;44(3):269–76. doi: 10.1038/ng.1073. pmid:22286219
[8]
Krumsiek J, Suhre K, Evans AM, Mitchell MW, Mohney RP, Milburn MV, et al. Mining the unknown: a systems approach to metabolite identification combining genetic and metabolic information. PLoS Genetics. 2012;8(10):e1003005. doi: 10.1371/journal.pgen.1003005. pmid:23093944
[9]
Suhre K, Gieger C. Genetic variation in metabolic phenotypes: study designs and applications. Nature Reviews Genetics. 2012 Nov;13(11):759–69. doi: 10.1038/nrg3314. pmid:23032255
[10]
Suhre K, Wallaschofski H, Raffler J, Friedrich N, Haring R, Michael K, et al. A genome-wide association study of metabolic traits in human urine. Nature Genetics. 2011 Jun;43(6):565–9. doi: 10.1038/ng.837. pmid:21572414
[11]
Montoliu I, Genick U, Ledda M, Collino S, Martin FP, le Coutre J, et al. Current status on genome-metabolome-wide associations: an opportunity in nutrition research. Genes & Nutrition. 2013 Jan;8(1):19–27. doi: 10.1007/s12263-012-0313-7
[12]
Rueedi R, Ledda M, Nicholls AW, Salek RM, Marques-Vidal P, Morya E, et al. Genome-wide association study of metabolic traits reveals novel gene-metabolite-disease links. PLoS Genetics. 2014 Feb;10(2):e1004132. doi: 10.1371/journal.pgen.1004132. pmid:24586186
[13]
Alonso A, Rodríguez MA, Vinaixa M, Tortosa R, Correig X, Julià A, et al. Focus: a robust workflow for one-dimensional NMR spectral analysis. Analytical Chemistry. 2014 Jan 21;86(2):1160–9. doi: 10.1021/ac403110u. pmid:24354303
[14]
Xie W, Wood AR, Lyssenko V, Weedon MN, Knowles JW, Alkayyali S, et al. Genetic variants associated with glycine metabolism and their role in insulin sensitivity and type 2 diabetes. Diabetes. 2013 Jun;62(6):2141–50. doi: 10.2337/db12-0876. pmid:23378610
[15]
Sabater-Lleal M, Huang J, Chasman D, Naitza S, Dehghan A, Johnson AD, et al. Multiethnic meta-analysis of genome-wide association studies in >100 000 subjects identifies 23 fibrinogen-associated Loci but no strong evidence of a causal association between circulating fibrinogen and cardiovascular disease. Circulation. 2013 Sep 17;128(12):1310–24. doi: 10.1161/CIRCULATIONAHA.113.002251. pmid:23969696
[16]
Hong MG, Karlsson R, Magnusson PK, Lewis MR, Isaacs W, Zheng LS, et al. A genome-wide assessment of variability in human serum metabolism. Human Mutation. 2013 Mar;34(3):515–24. doi: 10.1002/humu.22267. pmid:23281178
[17]
Global Lipids Genetics C, Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, et al. Discovery and refinement of loci associated with lipid levels. Nature Genetics. 2013 Nov;45(11):1274–83. doi: 10.1038/ng.2797. pmid:24097068
[18]
Evans DM, Zhu G, Dy V, Heath AC, Madden PA, Kemp JP, et al. Genome-wide association study identifies loci affecting blood copper, selenium and zinc. Human Molecular Genetics. 2013 Oct 1;22(19):3998–4006. doi: 10.1093/hmg/ddt239. pmid:23720494
[19]
Chambers JC, Zhang W, Lord GM, van der Harst P, Lawlor DA, Sehmi JS, et al. Genetic loci influencing kidney function and chronic kidney disease. Nature Genetics. 2010 May;42(5):373–5. doi: 10.1038/ng.566. pmid:20383145
[20]
Sepp?l? I, Kleber ME, Lyytik?inen LP, Hernesniemi JA, M?kel? KM, Oksala N, et al. Genome-wide association study on dimethylarginines reveals novel AGXT2 variants associated with heart rate variability but not with overall mortality. European Heart Journal. 2014 Feb;35(8):524–31. doi: 10.1093/eurheartj/eht447. pmid:24159190
[21]
Shin S-Y, Fauman EB, Petersen A-K, Krumsiek J, Santos R, Huang J, et al. An atlas of genetic influences on human blood metabolites. Nature Genetics. 2014 Jun;46(6):543–50. doi: 10.1038/ng.2982. pmid:24816252
[22]
Raffler J, R?misch-Margl W, Petersen AK, Pagel P, Bl?chl F, Hengstenberg C, et al. Identification and MS-assisted interpretation of genetically influenced NMR signals in human plasma. Genome Medicine. 2013 Feb 15;5(2):13. doi: 10.1186/gm417. pmid:23414815
[23]
Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Research. 2014 Jan;42(Database issue):D1001–6. doi: 10.1093/nar/gkt1229. pmid:24316577
[24]
Demirkan A, Henneman P, Verhoeven A, Dharuri H, Amin N, van Klinken JB, et al. Insight in genome-wide association of metabolite quantitative traits by exome sequence analyses. PLoS Genetics. 2015 Jan;11(1):e1004835. doi: 10.1371/journal.pgen.1004835. pmid:25569235
[25]
Yu B, Zheng Y, Alexander D, Morrison AC, Coresh J, Boerwinkle E. Genetic Determinants Influencing Human Serum Metabolome among African Americans. PLoS Genetics. 2014 Mar;10(3):e1004212. doi: 10.1371/journal.pgen.1004212. pmid:24625756
[26]
K?ttgen A, Pattaro C, B?ger CA, Fuchsberger C, Olden M, Glazer NL, et al. New loci associated with kidney function and chronic kidney disease. Nature Genetics. 2010 May;42(5):376–84. doi: 10.1038/ng.568. pmid:20383146
[27]
Tin A, Colantuoni E, Boerwinkle E, Kottgen A, Franceschini N, Astor BC, et al. Using multiple measures for quantitative trait association analyses: application to estimated glomerular filtration rate. Journal of Human Genetics. 2013 Jul;58(7):461–6. doi: 10.1038/jhg.2013.23. pmid:23535967
[28]
Rhee EP, Ho JE, Chen MH, Shen D, Cheng S, Larson MG, et al. A genome-wide association study of the human metabolome in a community-based cohort. Cell Metabolism. 2013 Jul 2;18(1):130–43. doi: 10.1016/j.cmet.2013.06.013. pmid:23823483
[29]
Kleber ME, Sepp?l? I, Pilz S, Hoffmann MM, Tomaschitz A, Oksala N, et al. Genome-wide association study identifies 3 genomic loci significantly associated with serum levels of homoarginine: the AtheroRemo Consortium. Circulation Cardiovascular Genetics. 2013 Oct;6(5):505–13. doi: 10.1161/CIRCGENETICS.113.000108. pmid:24047826
[30]
Lange LA, Croteau-Chonka DC, Marvelle AF, Qin L, Gaulton KJ, Kuzawa CW, et al. Genome-wide association study of homocysteine levels in Filipinos provides evidence for CPS1 in women and a stronger MTHFR effect in young adults. Human Molecular Genetics. 2010 May 15;19(10):2050–8. doi: 10.1093/hmg/ddq062. pmid:20154341
[31]
Summar ML, Gainer JV, Pretorius M, Malave H, Harris S, Hall LD, et al. Relationship between carbamoyl-phosphate synthetase genotype and systemic vascular function. Hypertension. 2004 Feb;43(2):186–91. pmid:14718356 doi: 10.1161/01.hyp.0000112424.06921.52
[32]
Zhang Y, Tong Y, Zhang Y, Ding H, Zhang H, Geng Y, et al. Two Novel Susceptibility SNPs for Ischemic Stroke Using Exome Sequencing in Chinese Han Population. Molecular Neurobiology. 2014 Apr;49(2):852–62. doi: 10.1007/s12035-013-8561-0. pmid:24122314
[33]
Bunker RD, Bulloch EM, Dickson JM, Loomes KM, Baker EN. Structure and function of human xylulokinase, an enzyme with important roles in carbohydrate metabolism. The Journal of Biological Chemistry. 2013 Jan 18;288(3):1643–52. doi: 10.1074/jbc.M112.427997. pmid:23179721
[34]
Jung JY, Lee HS, Kang DG, Kim NS, Cha MH, Bang OS, et al. 1H-NMR-based metabolomics study of cerebral infarction. Stroke; a journal of cerebral circulation. 2011 May;42(5):1282–8. doi: 10.1161/STROKEAHA.110.598789. pmid:21474802
[35]
Br?er S, Bailey CG, Kowalczuk S, Ng C, Vanslambrouck JM, Rodgers H, et al. Iminoglycinuria and hyperglycinuria are discrete human phenotypes resulting from complex mutations in proline and glycine transporters. The Journal of Clinical Investigation. 2008 Dec;118(12):3881–92. doi: 10.1172/JCI36625. pmid:19033659
[36]
Kittel A, Müller F, K?nig J, Mieth M, Sticht H, Zolk O, et al. Alanine-glyoxylate aminotransferase 2 (AGXT2) polymorphisms have considerable impact on methylarginine and beta-aminoisobutyrate metabolism in healthy volunteers. PloS ONE. 2014;9(2):e88544. doi: 10.1371/journal.pone.0088544. pmid:24586340
[37]
Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010 Aug 5;466(7307):707–13. doi: 10.1038/nature09270. pmid:20686565
[38]
Rothman N, Garcia-Closas M, Chatterjee N, Malats N, Wu X, Figueroa JD, et al. A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci. Nature Genetics. 2010 Nov;42(11):978–84. doi: 10.1038/ng.687. pmid:20972438
[39]
Figueroa JD, Ye Y, Siddiq A, Garcia-Closas M, Chatterjee N, Prokunina-Olsson L, et al. Genome-wide association study identifies multiple loci associated with bladder cancer risk. Human Molecular Genetics. 2014 Mar 1;23(5):1387–98. doi: 10.1093/hmg/ddt519. pmid:24163127
[40]
Hein DW. Molecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism and carcinogenesis. Mutation Research. 2002 Sep 30;506–507:65–77. pmid:12351146 doi: 10.1016/s0027-5107(02)00153-7
[41]
Magalon H, Patin E, Austerlitz F, Hegay T, Aldashev A, Quintana-Murci L, et al. Population genetic diversity of the NAT2 gene supports a role of acetylation in human adaptation to farming in Central Asia. European Journal of Human Genetics: EJHG. 2008 Feb;16(2):243–51. pmid:18043717 doi: 10.1038/sj.ejhg.5201963
[42]
Patin E, Barreiro LB, Sabeti PC, Austerlitz F, Luca F, Sajantila A, et al. Deciphering the ancient and complex evolutionary history of human arylamine N-acetyltransferase genes. American Journal of Human Genetics. 2006 Mar;78(3):423–36. pmid:16416399 doi: 10.1086/500614
[43]
Vatsis KP, Martell KJ, Weber WW. Diverse point mutations in the human gene for polymorphic N-acetyltransferase. Proceedings of the National Academy of Sciences of the United States of America. 1991 Jul 15;88(14):6333–7. pmid:2068113 doi: 10.1073/pnas.88.14.6333
[44]
Gahl WA, Huizing M. Hermansky-Pudlak Syndrome. In: Pagon RA, Adam MP, Ardinger HH, Bird TD, Dolan CR, Fong CT, et al., editors. GeneReviews(R). Seattle (WA)1993.
[45]
Tomoeda K, Awata H, Matsuura T, Matsuda I, Ploechl E, Milovac T, et al. Mutations in the 4-hydroxyphenylpyruvic acid dioxygenase gene are responsible for tyrosinemia type III and hawkinsinuria. Molecular Genetics and Metabolism. 2000 Nov;71(3):506–10. pmid:11073718 doi: 10.1006/mgme.2000.3085
[46]
Fujino T, Takei YA, Sone H, Ioka RX, Kamataki A, Magoori K, et al. Molecular identification and characterization of two medium-chain acyl-CoA synthetases, MACS1 and the Sa gene product. The Journal of Biological Chemistry. 2001 Sep 21;276(38):35961–6. pmid:11470804 doi: 10.1074/jbc.m106651200
[47]
Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014 Feb 20;506(7488):376–81. doi: 10.1038/nature12873. pmid:24390342
[48]
Rodríguez-Flores JL, Zhang K, Kang SW, Wen G, Ghosh S, Friese RS, et al. Conserved regulatory motifs at phenylethanolamine N-methyltransferase (PNMT) are disrupted by common functional genetic variation: an integrated computational/experimental approach. Mammalian Genome. 2010 Apr;21(3–4):195–204. doi: 10.1007/s00335-010-9253-y. pmid:20204374
[49]
Wang H, Fei YJ, Kekuda R, Yang-Feng TL, Devoe LD, Leibach FH, et al. Structure, function, and genomic organization of human Na(+)-dependent high-affinity dicarboxylate transporter. American journal of physiology Cell Physiology. 2000 May;278(5):C1019–30. pmid:10794676
[50]
Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012 Nov 1;491(7422):56–65. doi: 10.1038/nature11632. pmid:23128226
[51]
Arnold M, Raffler J, Pfeufer A, Suhre K, Kastenmüller G. SNiPA: an interactive, genetic variant-centered annotation browser. Bioinformatics. 2015 Apr 15;31(8):1334–6. doi: 10.1093/bioinformatics/btu779. pmid:25431330
[52]
Uhlén M, Fagerberg L, Hallstr?m BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015 Jan 23;347(6220):1260419. doi: 10.1126/science.1260419. pmid:25613900
[53]
Petersen AK, Krumsiek J, W?gele B, Theis FJ, Wichmann HE, Gieger C, et al. On the hypothesis-free testing of metabolite ratios in genome-wide and metabolome-wide association studies. BMC Bioinformatics. 2012;13:120. doi: 10.1186/1471-2105-13-120. pmid:22672667
[54]
Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, et al. The human urine metabolome. PloS ONE. 2013;8(9):e73076. doi: 10.1371/journal.pone.0073076. pmid:24023812
[55]
Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Research. 2014 Jan;42(Database issue):D980–5. doi: 10.1093/nar/gkt1113. pmid:24234437
[56]
Stenson PD, Mort M, Ball EV, Shaw K, Phillips A, Cooper DN. The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Human Genetics. 2014 Jan;133(1):1–9. pmid:24077912 doi: 10.1007/s00439-013-1358-4
[57]
Mailman MD, Feolo M, Jin Y, Kimura M, Tryka K, Bagoutdinov R, et al. The NCBI dbGaP database of genotypes and phenotypes. Nature Genetics. 2007 Oct;39(10):1181–6. pmid:17898773 doi: 10.1038/ng1007-1181
[58]
Larive CK, Barding GA Jr., Dinges MM. NMR spectroscopy for metabolomics and metabolic profiling. Analytical Chemistry. 2015 Jan 6;87(1):133–46. doi: 10.1021/ac504075g. pmid:25375201
[59]
Veiga-da-Cunha M, Hadi F, Balligand T, Stroobant V, Van Schaftingen E. Molecular identification of hydroxylysine kinase and of ammoniophospholyases acting on 5-phosphohydroxy-L-lysine and phosphoethanolamine. The Journal of Biological Chemistry. 2012 Mar 2;287(10):7246–55. doi: 10.1074/jbc.M111.323485. pmid:22241472
Benson JM, Tibbetts BM, Barr EB. The uptake, distribution, metabolism, and excretion of methyl tertiary-butyl ether inhaled alone and in combination with gasoline vapor. Journal of Toxicology and Environmental Health Part A. 2003 Jun 13;66(11):1029–52. pmid:12775515 doi: 10.1080/15287390306398
[62]
Amberg A, Rosner E, Dekant W. Biotransformation and kinetics of excretion of methyl-tert-butyl ether in rats and humans. Toxicological Sciences. 1999 Sep;51(1):1–8. pmid:10496672 doi: 10.1093/toxsci/51.1.1
[63]
McGregor D. Ethyl tertiary-butyl ether: a toxicological review. Critical Reviews in Toxicology. 2007 May;37(4):287–312. pmid:17453936 doi: 10.1080/10408440601177723
[64]
Li M, Wang B, Zhang M, Rantalainen M, Wang S, Zhou H, et al. Symbiotic gut microbes modulate human metabolic phenotypes. Proceedings of the National Academy of Sciences of the United States of America. 2008 Feb 12;105(6):2117–22. doi: 10.1073/pnas.0712038105. pmid:18252821
[65]
Altmaier E, Fobo G, Heier M, Thorand B, Meisinger C, R?misch-Margl W, et al. Metabolomics approach reveals effects of antihypertensives and lipid-lowering drugs on the human metabolism. European Journal of Epidemiology. 2014 May;29(5):325–36. doi: 10.1007/s10654-014-9910-7. pmid:24816436
[66]
Dai L, Peng C, Montellier E, Lu Z, Chen Y, Ishii H, et al. Lysine 2-hydroxyisobutyrylation is a widely distributed active histone mark. Nature Chemical Biology. 2014 May;10(5):365–70. doi: 10.1038/nchembio.1497. pmid:24681537
[67]
Lee JH, Tate CM, You JS, Skalnik DG. Identification and characterization of the human Set1B histone H3-Lys4 methyltransferase complex. The Journal of Biological Chemistry. 2007 May 4;282(18):13419–28. pmid:17355966 doi: 10.1074/jbc.m609809200
[68]
B?r A, Oesterhelt G. Conversion of [U-13C]xylitol and D-[U-13C]glucose into urinary [1,2-13C]glycollate and [1,2-13C]oxalate in man. International journal for vitamin and nutrition research Supplement = Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung Supplement. 1985;28:119–33. pmid:3938801
[69]
Conyers RA, Huber TW, Thomas DW, Rofe AM, Bais R, Edwards RG. A one-compartment model for calcium oxalate tissue deposition during xylitol infusions in humans. International journal for vitamin and nutrition research Supplement = Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung Supplement. 1985;28:47–57. pmid:3938803
[70]
Holmes RP, Assimos DG. Glyoxylate synthesis, and its modulation and influence on oxalate synthesis. The Journal of Urology. 1998 Nov;160(5):1617–24. pmid:9783918 doi: 10.1097/00005392-199811000-00003
[71]
Conyers RA, Bais R, Rofe AM. The relation of clinical catastrophes, endogenous oxalate production, and urolithiasis. Clinical Chemistry. 1990 Oct;36(10):1717–30. pmid:2208646 doi: 10.1007/978-1-4899-0873-5_151
[72]
Rao NM, Yallapragada A, Winden KD, Saver J, Liebeskind DS. Stroke in primary hyperoxaluria type I. Journal of Neuroimaging. 2014 Jul-Aug;24(4):411–3. doi: 10.1111/jon.12020. pmid:23551880
[73]
Bayar C, Ozer I. A study on the route of 1-methylurate formation in theophylline metabolism. European Journal of Drug Metabolism and Pharmacokinetics. 1997 Oct-Dec;22(4):415–9. pmid:9512943 doi: 10.1007/bf03190979
[74]
Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genetics. 2005 Jul;37(7):766–70. pmid:15965474 doi: 10.1038/ng1590
[75]
Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007 Jun 29;129(7):1401–14. pmid:17604727 doi: 10.1016/j.cell.2007.04.040
[76]
Sewer A, Paul N, Landgraf P, Aravin A, Pfeffer S, Brownstein MJ, et al. Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics. 2005;6:267. pmid:16274478 doi: 10.1186/1471-2105-6-267
[77]
Pekkala S, Martinez AI, Barcelona B, Yefimenko I, Finckh U, Rubio V, et al. Understanding carbamoyl-phosphate synthetase I (CPS1) deficiency by using expression studies and structure-based analysis. Human Mutation. 2010 Jul;31(7):801–8. doi: 10.1002/humu.21272. pmid:20578160
[78]
Kikuchi G. The glycine cleavage system: composition, reaction mechanism, and physiological significance. Molecular and Cellular Biochemistry. 1973 Jun 27;1(2):169–87. pmid:4585091 doi: 10.1007/bf01659328
[79]
Kikuchi G, Motokawa Y, Yoshida T, Hiraga K. Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia. Proceedings of the Japan Academy Series B, Physical and Biological Sciences. 2008;84(7):246–63. pmid:18941301 doi: 10.2183/pjab.84.246
[80]
Roll P, Massacrier A, Pereira S, Robaglia-Schlupp A, Cau P, Szepetowski P. New human sodium/glucose cotransporter gene (KST1): identification, characterization, and mutation analysis in ICCA (infantile convulsions and choreoathetosis) and BFIC (benign familial infantile convulsions) families. Gene. 2002 Feb 20;285(1–2):141–8. pmid:12039040 doi: 10.1016/s0378-1119(02)00416-x
[81]
Groenen PM, Klootwijk R, Schijvenaars MM, Straatman H, Mariman EC, Franke B, et al. Spina bifida and genetic factors related to myo-inositol, glucose, and zinc. Molecular Genetics and Metabolism. 2004 Jun;82(2):154–61. pmid:15172003 doi: 10.1016/j.ymgme.2004.03.007
[82]
Aouameur R, Da Cal S, Bissonnette P, Coady MJ, Lapointe JY. SMIT2 mediates all myo-inositol uptake in apical membranes of rat small intestine. American Journal of Physiology—Gastrointestinal and Liver Physiology. 2007 Dec;293(6):G1300–7. pmid:17932225 doi: 10.1152/ajpgi.00422.2007
[83]
Lahjouji K, Aouameur R, Bissonnette P, Coady MJ, Bichet DG, Lapointe JY. Expression and functionality of the Na+/myo-inositol cotransporter SMIT2 in rabbit kidney. Biochimica et Biophysica Acta. 2007 May;1768(5):1154–9. pmid:17306760 doi: 10.1016/j.bbamem.2007.01.007
[84]
John U, Greiner B, Hensel E, Lüdemann J, Piek M, Sauer S, et al. Study of Health In Pomerania (SHIP): a health examination survey in an east German region: objectives and design. Sozial- und Pr?ventivmedizin. 2001;46(3):186–94. pmid:11565448 doi: 10.1007/bf01324255
[85]
V?lzke H, Alte D, Schmidt CO, Radke D, Lorbeer R, Friedrich N, et al. Cohort profile: the study of health in Pomerania. International Journal of Epidemiology. 2011 Apr;40(2):294–307. doi: 10.1093/ije/dyp394. pmid:20167617
[86]
Holle R, Happich M, L?wel H, Wichmann HE, Group MKS. KORA—a research platform for population based health research. Gesundheitswesen. 2005 Aug;67 Suppl 1:S19–25. pmid:16032513 doi: 10.1055/s-2005-858235
[87]
Delaneau O, Marchini J, Zagury JF. A linear complexity phasing method for thousands of genomes. Nature Methods. 2012 Feb;9(2):179–81. doi: 10.1038/nmeth.1785
[88]
Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genetics. 2009 Jun;5(6):e1000529. doi: 10.1371/journal.pgen.1000529. pmid:19543373
[89]
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. American journal of Human Genetics. 2007 Sep;81(3):559–75. pmid:17701901 doi: 10.1086/519795
[90]
Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. HMDB 3.0—The Human Metabolome Database in 2013. Nucleic Acids Research. 2013 Jan;41(Database issue):D801–7. doi: 10.1093/nar/gks1065. pmid:23161693
[91]
Barngrover DA, Stevens HC, Dills WL Jr.D-Xylulose-1-phosphate: enzymatic assay and production in isolated rat hepatocytes. Biochemical and Biophysical Research Communications. 1981 Sep 16;102(1):75–80. pmid:6458298 doi: 10.1016/0006-291x(81)91490-x