Leucine-rich repeat kinase 2 (LRRK2) is a key molecule in the pathogenesis of familial and idiopathic Parkinson’s disease (PD). We have identified two novel LRRK2-associated proteins, a HECT-type ubiquitin ligase, HERC2, and an adaptor-like protein with six repeated Neuralized domains, NEURL4. LRRK2 binds to NEURL4 and HERC2 via the LRRK2 Ras of complex proteins (ROC) domain and NEURL4, respectively. HERC2 and NEURL4 link LRRK2 to the cellular vesicle transport pathway and Notch signaling, through which the LRRK2 complex promotes the recycling of the Notch ligand Delta-like 1 (Dll1)/Delta (Dl) through the modulation of endosomal trafficking. This process negatively regulates Notch signaling through cis-inhibition by stabilizing Dll1/Dl, which accelerates neural stem cell differentiation and modulates the function and survival of differentiated dopaminergic neurons. These effects are strengthened by the R1441G ROC domain-mutant of LRRK2. These findings suggest that the alteration of Notch signaling in mature neurons is a component of PD etiology linked to LRRK2.
References
[1]
Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron. 2004;44(4):601–7. pmid:15541309. doi: 10.1016/j.neuron.2004.11.005
[2]
Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C, Kubo M, et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nat Genet. 2009;41(12):1303–7. Epub 2009/11/17. doi: ng.485 [pii] doi: 10.1038/ng.485 pmid:19915576.
[3]
Lin X, Parisiadou L, Gu XL, Wang L, Shim H, Sun L, et al. Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson's-disease-related mutant alpha-synuclein. Neuron. 2009;64(6):807–27. Epub 2010/01/13. doi: S0896-6273(09)00889-7 [pii] doi: 10.1016/j.neuron.2009.11.006 pmid:20064389; PubMed Central PMCID: PMC2807409.
[4]
Zechel S, Meinhardt A, Unsicker K, von Bohlen Und Halbach O. Expression of leucine-rich-repeat-kinase 2 (LRRK2) during embryonic development. Int J Dev Neurosci. 2010;28(5):391–9. Epub 2010/04/21. doi: S0736-5748(10)00062-6 [pii] doi: 10.1016/j.ijdevneu.2010.04.002 pmid:20403420.
[5]
Tong Y, Yamaguchi H, Giaime E, Boyle S, Kopan R, Kelleher RJ 3rd, et al. Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(21):9879–84. Epub 2010/05/12. doi: 1004676107 [pii] doi: 10.1073/pnas.1004676107 pmid:20457918; PubMed Central PMCID: PMC2906862.
[6]
Herzig MC, Kolly C, Persohn E, Theil D, Schweizer T, Hafner T, et al. LRRK2 protein levels are determined by kinase function and are crucial for kidney and lung homeostasis in mice. Human molecular genetics. 2011;20(21):4209–23. Epub 2011/08/11. doi: ddr348 [pii] doi: 10.1093/hmg/ddr348 pmid:21828077; PubMed Central PMCID: PMC3188995.
[7]
Marin I, van Egmond WN, van Haastert PJ. The Roco protein family: a functional perspective. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2008;22(9):3103–10. pmid:18523161. doi: 10.1096/fj.08-111310
[8]
Marin I. The Parkinson disease gene LRRK2: evolutionary and structural insights. Molecular biology and evolution. 2006;23(12):2423–33. doi: 10.1093/molbev/msl114 pmid:16966681.
[9]
Imai Y, Gehrke S, Wang HQ, Takahashi R, Hasegawa K, Oota E, et al. Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. The EMBO journal. 2008;27(18):2432–43. pmid:18701920. doi: 10.1038/emboj.2008.163.
[10]
Dodson MW, Zhang T, Jiang C, Chen S, Guo M. Roles of the Drosophila LRRK2 homolog in Rab7-dependent lysosomal positioning. Human molecular genetics. 2012;21(6):1350–63. Epub 2011/12/16. doi: ddr573 [pii] doi: 10.1093/hmg/ddr573 pmid:22171073; PubMed Central PMCID: PMC3284123.
[11]
Redmond L, Oh SR, Hicks C, Weinmaster G, Ghosh A. Nuclear Notch1 signaling and the regulation of dendritic development. Nature neuroscience. 2000;3(1):30–40. Epub 1999/12/22. doi: 10.1038/71104 pmid:10607392.
[12]
Sestan N, Artavanis-Tsakonas S, Rakic P. Contact-dependent inhibition of cortical neurite growth mediated by notch signaling. Science. 1999;286(5440):741–6. Epub 1999/10/26. doi: 7935 [pii]. pmid:10531053. doi: 10.1126/science.286.5440.741
[13]
Ables JL, Breunig JJ, Eisch AJ, Rakic P. Not(ch) just development: Notch signalling in the adult brain. Nature reviews Neuroscience. 2011;12(5):269–83. Epub 2011/04/21. doi: nrn3024 [pii] doi: 10.1038/nrn3024 pmid:21505516; PubMed Central PMCID: PMC3159580.
[14]
Lieber T, Kidd S, Struhl G. DSL-Notch signaling in the Drosophila brain in response to olfactory stimulation. Neuron. 2011;69(3):468–81. doi: 10.1016/j.neuron.2010.12.015 pmid:21315258; PubMed Central PMCID: PMC3216490.
[15]
Pratt EB, Wentzell JS, Maxson JE, Courter L, Hazelett D, Christian JL. The cell giveth and the cell taketh away: an overview of Notch pathway activation by endocytic trafficking of ligands and receptors. Acta Histochem. 2011;113(3):248–55. Epub 2010/02/04. doi: S0065-1281(10)00007-3 [pii] doi: 10.1016/j.acthis.2010.01.006 pmid:20122714; PubMed Central PMCID: PMC2939183.
[16]
del Alamo D, Rouault H, Schweisguth F. Mechanism and significance of cis-inhibition in Notch signalling. Current biology: CB. 2011;21(1):R40–7. Epub 2011/01/11. doi: S0960-9822(10)01298-4 [pii] doi: 10.1016/j.cub.2010.10.034 pmid:21215938.
[17]
Al-Hakim AK, Bashkurov M, Gingras AC, Durocher D, Pelletier L. Interaction proteomics identify NEURL4 and the HECT E3 ligase HERC2 as novel modulators of centrosome architecture. Mol Cell Proteomics. 2012;11(6):M111 014233. doi: 10.1074/mcp.M111.014233 pmid:22261722; PubMed Central PMCID: PMC3433907.
[18]
Li J, Kim S, Kobayashi T, Liang FX, Korzeniewski N, Duensing S, et al. Neurl4, a novel daughter centriole protein, prevents formation of ectopic microtubule organizing centres. EMBO Rep. 2012;13(6):547–53. doi: 10.1038/embor.2012.40 pmid:22441691; PubMed Central PMCID: PMC3367236.
[19]
Martinez-Noel G, Galligan JT, Sowa ME, Arndt V, Overton TM, Harper JW, et al. Identification and proteomic analysis of distinct UBE3A/E6AP protein complexes. Mol Cell Biol. 2012;32(15):3095–106. doi: 10.1128/MCB.00201-12 pmid:22645313; PubMed Central PMCID: PMC3434508.
[20]
Biosa A, Trancikova A, Civiero L, Glauser L, Bubacco L, Greggio E, et al. GTPase activity regulates kinase activity and cellular phenotypes of Parkinson's disease-associated LRRK2. Human molecular genetics. 2013;22(6):1140–56. doi: 10.1093/hmg/dds522 pmid:23241358.
[21]
Xiong Y, Coombes CE, Kilaru A, Li X, Gitler AD, Bowers WJ, et al. GTPase activity plays a key role in the pathobiology of LRRK2. PLoS genetics. 2010;6(4):e1000902. doi: 10.1371/journal.pgen.1000902 pmid:20386743; PubMed Central PMCID: PMC2851569.
[22]
Commisso C, Boulianne GL. The NHR1 domain of Neuralized binds Delta and mediates Delta trafficking and Notch signaling. Mol Biol Cell. 2007;18(1):1–13. Epub 2006/10/27. doi: E06-08-0753 [pii] doi: 10.1091/mbc.E06-08-0753 pmid:17065551; PubMed Central PMCID: PMC1751308.
[23]
Lai EC, Roegiers F, Qin X, Jan YN, Rubin GM. The ubiquitin ligase Drosophila Mind bomb promotes Notch signaling by regulating the localization and activity of Serrate and Delta. Development. 2005;132(10):2319–32. Epub 2005/04/15. doi: dev.01825 [pii] doi: 10.1242/dev.01825 pmid:15829515.
[24]
Daskalaki A, Shalaby NA, Kux K, Tsoumpekos G, Tsibidis GD, Muskavitch MA, et al. Distinct intracellular motifs of Delta mediate its ubiquitylation and activation by Mindbomb1 and Neuralized. The Journal of cell biology. 2011;195(6):1017–31. doi: 10.1083/jcb.201105166 pmid:22162135; PubMed Central PMCID: PMC3241720.
[25]
Wilkin M, Tongngok P, Gensch N, Clemence S, Motoki M, Yamada K, et al. Drosophila HOPS and AP-3 complex genes are required for a Deltex-regulated activation of notch in the endosomal trafficking pathway. Dev Cell. 2008;15(5):762–72. doi: 10.1016/j.devcel.2008.09.002 pmid:19000840.
[26]
Emery G, Hutterer A, Berdnik D, Mayer B, Wirtz-Peitz F, Gaitan MG, et al. Asymmetric Rab 11 endosomes regulate delta recycling and specify cell fate in the Drosophila nervous system. Cell. 2005;122(5):763–73. doi: 10.1016/j.cell.2005.08.017 pmid:16137758.
[27]
Le Borgne R, Remaud S, Hamel S, Schweisguth F. Two distinct E3 ubiquitin ligases have complementary functions in the regulation of delta and serrate signaling in Drosophila. PLoS biology. 2005;3(4):e96. doi: 10.1371/journal.pbio.0030096 pmid:15760269; PubMed Central PMCID: PMC1064853.
[28]
Stockhausen MT, Sjolund J, Manetopoulos C, Axelson H. Effects of the histone deacetylase inhibitor valproic acid on Notch signalling in human neuroblastoma cells. Br J Cancer. 2005;92(4):751–9. Epub 2005/02/03. doi: 6602309 [pii] doi: 10.1038/sj.bjc.6602309 pmid:15685243; PubMed Central PMCID: PMC2361888.
[29]
Huppert SS, Jacobsen TL, Muskavitch MA. Feedback regulation is central to Delta-Notch signalling required for Drosophila wing vein morphogenesis. Development. 1997;124(17):3283–91. pmid:9310323.
[30]
Shiba-Fukushima K, Inoshita T, Hattori N, Imai Y. PINK1-mediated phosphorylation of Parkin boosts Parkin activity in Drosophila. PLoS genetics. 2014;10(6):e1004391. doi: 10.1371/journal.pgen.1004391 pmid:24901221; PubMed Central PMCID: PMC4046931.
[31]
Rosa JL, Casaroli-Marano RP, Buckler AJ, Vilaro S, Barbacid M. p619, a giant protein related to the chromosome condensation regulator RCC1, stimulates guanine nucleotide exchange on ARF1 and Rab proteins. The EMBO journal. 1996;15(16):4262–73. Epub 1996/08/15. pmid:8861955; PubMed Central PMCID: PMC452152.
[32]
Rosa JL, Barbacid M. A giant protein that stimulates guanine nucleotide exchange on ARF1 and Rab proteins forms a cytosolic ternary complex with clathrin and Hsp70. Oncogene. 1997;15(1):1–6. doi: 10.1038/sj.onc.1201170 pmid:9233772.
[33]
Lai EC, Deblandre GA, Kintner C, Rubin GM. Drosophila neuralized is a ubiquitin ligase that promotes the internalization and degradation of delta. Dev Cell. 2001;1(6):783–94. pmid:11740940. doi: 10.1016/s1534-5807(01)00092-2
[34]
Bettencourt-Dias M, Giet R, Sinka R, Mazumdar A, Lock WG, Balloux F, et al. Genome-wide survey of protein kinases required for cell cycle progression. Nature. 2004;432(7020):980–7. doi: 10.1038/nature03160 pmid:15616552.
[35]
Yang Y, Gehrke S, Imai Y, Huang Z, Ouyang Y, Wang JW, et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(28):10793–8. Epub 2006/07/05. doi: 0602493103 [pii] doi: 10.1073/pnas.0602493103 pmid:16818890; PubMed Central PMCID: PMC1502310.
[36]
Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(1):378–83. Epub 2009/12/08. doi: 0911187107 [pii] doi: 10.1073/pnas.0911187107 pmid:19966284; PubMed Central PMCID: PMC2806779.
[37]
Guo L, Gandhi PN, Wang W, Petersen RB, Wilson-Delfosse AL, Chen SG. The Parkinson's disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity. Exp Cell Res. 2007;313(16):3658–70. pmid:17706965. doi: 10.1016/j.yexcr.2007.07.007
[38]
Hanafusa H, Ishikawa K, Kedashiro S, Saigo T, Iemura S, Natsume T, et al. Leucine-rich repeat kinase LRRK1 regulates endosomal trafficking of the EGF receptor. Nature communications. 2011;2:158. Epub 2011/01/20. doi: ncomms1161 [pii] doi: 10.1038/ncomms1161 pmid:21245839; PubMed Central PMCID: PMC3105304.
[39]
Sen S, Webber PJ, West AB. Dependence of leucine-rich repeat kinase 2 (LRRK2) kinase activity on dimerization. The Journal of biological chemistry. 2009;284(52):36346–56. Epub 2009/10/15. doi: M109.025437 [pii] doi: 10.1074/jbc.M109.025437 pmid:19826009; PubMed Central PMCID: PMC2794750.
[40]
Greggio E, Zambrano I, Kaganovich A, Beilina A, Taymans JM, Daniels V, et al. The Parkinson disease-associated leucine-rich repeat kinase 2 (LRRK2) is a dimer that undergoes intramolecular autophosphorylation. The Journal of biological chemistry. 2008;283(24):16906–14. Epub 2008/04/10. doi: M708718200 [pii] doi: 10.1074/jbc.M708718200 pmid:18397888; PubMed Central PMCID: PMC2423262.
[41]
Andres-Mateos E, Mejias R, Sasaki M, Li X, Lin BM, Biskup S, et al. Unexpected lack of hypersensitivity in LRRK2 knock-out mice to MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyr?idine). J Neurosci. 2009;29(50):15846–50. Epub 2009/12/18. doi: 29/50/15846 [pii] doi: 10.1523/JNEUROSCI.4357-09.2009 pmid:20016100; PubMed Central PMCID: PMC2846613.
[42]
Crews L, Mizuno H, Desplats P, Rockenstein E, Adame A, Patrick C, et al. Alpha-synuclein alters Notch-1 expression and neurogenesis in mouse embryonic stem cells and in the hippocampus of transgenic mice. J Neurosci. 2008;28(16):4250–60. Epub 2008/04/18. doi: 28/16/4250 [pii] doi: 10.1523/JNEUROSCI.0066-08.2008 pmid:18417705; PubMed Central PMCID: PMC2666311.
[43]
Gitler AD, Bevis BJ, Shorter J, Strathearn KE, Hamamichi S, Su LJ, et al. The Parkinson's disease protein alpha-synuclein disrupts cellular Rab homeostasis. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(1):145–50. doi: 10.1073/pnas.0710685105 pmid:18162536; PubMed Central PMCID: PMC2224176.
[44]
Vilarino-Guell C, Wider C, Ross OA, Dachsel JC, Kachergus JM, Lincoln SJ, et al. VPS35 mutations in Parkinson disease. Am J Hum Genet. 2011;89(1):162–7. doi: 10.1016/j.ajhg.2011.06.001 pmid:21763482; PubMed Central PMCID: PMC3135796.
[45]
Zimprich A, Benet-Pages A, Struhal W, Graf E, Eck SH, Offman MN, et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet. 2011;89(1):168–75. doi: 10.1016/j.ajhg.2011.06.008 pmid:21763483; PubMed Central PMCID: PMC3135812.
[46]
Zavodszky E, Seaman MN, Moreau K, Jimenez-Sanchez M, Breusegem SY, Harbour ME, et al. Mutation in VPS35 associated with Parkinson's disease impairs WASH complex association and inhibits autophagy. Nature communications. 2014;5:3828. doi: 10.1038/ncomms4828 pmid:24819384; PubMed Central PMCID: PMC4024763.
[47]
MacLeod DA, Rhinn H, Kuwahara T, Zolin A, Di Paolo G, McCabe BD, et al. RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson's disease risk. Neuron. 2013;77(3):425–39. doi: 10.1016/j.neuron.2012.11.033 pmid:23395371; PubMed Central PMCID: PMC3646583.
[48]
Alberi L, Liu S, Wang Y, Badie R, Smith-Hicks C, Wu J, et al. Activity-induced Notch signaling in neurons requires Arc/Arg3.1 and is essential for synaptic plasticity in hippocampal networks. Neuron. 2011;69(3):437–44. Epub 2011/02/15. doi: S0896-6273(11)00029-8 [pii] doi: 10.1016/j.neuron.2011.01.004 pmid:21315255; PubMed Central PMCID: PMC3056341.
[49]
Lazarov O, Marr RA. Neurogenesis and Alzheimer's disease: at the crossroads. Exp Neurol. 2010;223(2):267–81. Epub 2009/08/25. doi: S0014-4886(09)00327-6 [pii] doi: 10.1016/j.expneurol.2009.08.009 pmid:19699201; PubMed Central PMCID: PMC2864344.
[50]
Veeraraghavalu K, Choi SH, Zhang X, Sisodia SS. Presenilin 1 mutants impair the self-renewal and differentiation of adult murine subventricular zone-neuronal progenitors via cell-autonomous mechanisms involving notch signaling. J Neurosci. 2010;30(20):6903–15. Epub 2010/05/21. doi: 30/20/6903 [pii] doi: 10.1523/JNEUROSCI.0527-10.2010 pmid:20484632; PubMed Central PMCID: PMC2879010.
[51]
Winner B, Melrose HL, Zhao C, Hinkle KM, Yue M, Kent C, et al. Adult neurogenesis and neurite outgrowth are impaired in LRRK2 G2019S mice. Neurobiology of disease. 2011;41(3):706–16. Epub 2010/12/21. doi: S0969-9961(10)00401-8 [pii] doi: 10.1016/j.nbd.2010.12.008 pmid:21168496; PubMed Central PMCID: PMC3059106.
[52]
Geraerts M, Krylyshkina O, Debyser Z, Baekelandt V. Concise review: therapeutic strategies for Parkinson disease based on the modulation of adult neurogenesis. Stem Cells. 2007;25(2):263–70. doi: 2006–0364 [pii] doi: 10.1634/stemcells.2006-0364 pmid:17082225.
[53]
Yoshimi K, Ren YR, Seki T, Yamada M, Ooizumi H, Onodera M, et al. Possibility for neurogenesis in substantia nigra of parkinsonian brain. Ann Neurol. 2005;58(1):31–40. Epub 2005/05/25. doi: 10.1002/ana.20506 pmid:15912513.
[54]
Shiba-Fukushima K, Imai Y, Yoshida S, Ishihama Y, Kanao T, Sato S, et al. PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Scientific reports. 2012;2:1002. doi: 10.1038/srep01002 pmid:23256036; PubMed Central PMCID: PMC3525937.
[55]
Kanao T, Venderova K, Park DS, Unterman T, Lu B, Imai Y. Activation of FoxO by LRRK2 induces expression of proapoptotic proteins and alters survival of postmitotic dopaminergic neuron in Drosophila. Human molecular genetics. 2010;19(19):3747–58. Epub 2010/07/14. doi: ddq289 [pii] doi: 10.1093/hmg/ddq289 pmid:20624856.
[56]
Kanao T, Sawada T, Davies SA, Ichinose H, Hasegawa K, Takahashi R, et al. The Nitric Oxide-Cyclic GMP Pathway Regulates FoxO and Alters Dopaminergic Neuron Survival in Drosophila. PloS one. 2012;7(2):e30958. doi: PONE-D-11-18262 [pii] doi: 10.1371/journal.pone.0030958 pmid:22393355; PubMed Central PMCID: PMCPMC3290610.
[57]
Wang HQ, Imai Y, Kataoka A, Takahashi R. Cell type-specific upregulation of Parkin in response to ER stress. Antioxid Redox Signal. 2007;9(5):533–42. Epub 2007/05/01. doi: 10.1089/ars.2006.1522 pmid:17465879.
[58]
Graves HK, Woodfield SE, Yang CC, Halder G, Bergmann A. Notch signaling activates Yorkie non-cell autonomously in Drosophila. PloS one. 2012;7(6):e37615. doi: 10.1371/journal.pone.0037615 pmid:22679484; PubMed Central PMCID: PMC3367968.
[59]
Mummery-Widmer JL, Yamazaki M, Stoeger T, Novatchkova M, Bhalerao S, Chen D, et al. Genome-wide analysis of Notch signalling in Drosophila by transgenic RNAi. Nature. 2009;458(7241):987–92. doi: 10.1038/nature07936 pmid:19363474; PubMed Central PMCID: PMC2988197.
[60]
Venderova K, Kabbach G, Abdel-Messih E, Zhang Y, Parks RJ, Imai Y, et al. Leucine-Rich Repeat Kinase 2 interacts with Parkin, DJ-1 and PINK-1 in a Drosophila melanogaster model of Parkinson's disease. Human molecular genetics. 2009;18(22):4390–404. Epub 2009/08/21. doi: ddp394 [pii] doi: 10.1093/hmg/ddp394 pmid:19692353.
[61]
Struhl G, Adachi A. Nuclear access and action of notch in vivo. Cell. 1998;93(4):649–60. pmid:9604939. doi: 10.1016/s0092-8674(00)81193-9
[62]
Shiba-Fukushima K, Arano T, Matsumoto G, Inoshita T, Yoshida S, Ishihama Y, et al. Phosphorylation of Mitochondrial Polyubiquitin by PINK1 Promotes Parkin Mitochondrial Tethering. PLoS genetics. 2014;10(12):e1004861. doi: 10.1371/journal.pgen.1004861 pmid:25474007; PubMed Central PMCID: PMC4256268.
[63]
Ohtsuka T, Sakamoto M, Guillemot F, Kageyama R. Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain. The Journal of biological chemistry. 2001;276(32):30467–74. Epub 2001/06/16. doi: 10.1074/jbc.M102420200M102420200 [pii]. pmid:11399758.
[64]
Yagi T, Tokunaga T, Furuta Y, Nada S, Yoshida M, Tsukada T, et al. A novel ES cell line, TT2, with high germline-differentiating potency. Analytical biochemistry. 1993;214(1):70–6. doi: 10.1006/abio.1993.1458 pmid:8250257.
[65]
Sakai K, Miyazaki J. A transgenic mouse line that retains Cre recombinase activity in mature oocytes irrespective of the cre transgene transmission. Biochemical and biophysical research communications. 1997;237(2):318–24. pmid:9268708. doi: 10.1006/bbrc.1997.7111
[66]
Mao Z, Davis RL. Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity. Frontiers in neural circuits. 2009;3:5. doi: 10.3389/neuro.04.005.2009 pmid:19597562; PubMed Central PMCID: PMC2708966.
[67]
Venken KJ, Simpson JH, Bellen HJ. Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron. 2011;72(2):202–30. doi: 10.1016/j.neuron.2011.09.021 pmid:22017985; PubMed Central PMCID: PMC3232021.
[68]
Kitamoto T. Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. Journal of neurobiology. 2001;47(2):81–92. pmid:11291099. doi: 10.1002/neu.1018