全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2015 

Photoreceptor Specificity in the Light-Induced and COP1-Mediated Rapid Degradation of the Repressor of Photomorphogenesis SPA2 in Arabidopsis

DOI: 10.1371/journal.pgen.1005516

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Arabidopsis COP1/SPA E3 ubiquitin ligase is a key negative regulator that represses light signaling in darkness by targeting transcription factors involved in the light response for degradation. The COP1/SPA complex consists of COP1 and members of the four-member SPA protein family (SPA1-SPA4). Genetic analysis indicated that COP1/SPA2 function is particularly strongly repressed by light when compared to complexes carrying the other three SPAs, thereby promoting a light response after exposure of plants to extremely low light. Here, we show that the SPA2 protein is degraded within 5–15 min after exposure of dark-grown seedlings to a pulse of light. Phytochrome photoreceptors are required for the rapid degradation of SPA2 in red, far-red and also in blue light, whereas cryptochromes are not involved in the rapid, blue light-induced reduction in SPA2 protein levels. These results uncover a photoreceptor-specific mechanism of light-induced inhibition of COP1/SPA2 function. Phytochrome A (phyA) is required for the severe blue light responsiveness of spa triple mutants expressing only SPA2, thus confirming the important role of phyA in downregulating SPA2 function in blue light. In blue light, SPA2 forms a complex with cryptochrome 1 (cry1), but not with cryptochrome 2 (cry2) in vivo, indicating that the lack of a rapid blue light response of the SPA2 protein is only in part caused by a failure to interact with cryptochromes. Since SPA1 interacts with both cry1 and cry2, these results provide first molecular evidence that the light-regulation of different SPA proteins diverged during evolution. SPA2 degradation in the light requires COP1 and the COP1-interacting coiled-coil domain of SPA2, supporting that SPA2 is ubiquitinated by COP1. We propose that light perceived by phytochromes causes a switch in the ubiquitination activity of COP1/SPA2 from ubiquitinating downstream substrates to ubiquitinating SPA2, which subsequently causes a repression of COP1/SPA2 function.

References

[1]  Kami C, Lorrain S, Hornitschek P, Fankhauser C (2010) Light-regulated plant growth and development. Curr Top Dev Biol 91: 29–66. doi: 10.1016/S0070-2153(10)91002-8. pmid:20705178
[2]  Casal JJ (2013) Photoreceptor signaling networks in plant responses to shade. Annu Rev Plant Biol 64: 403–427. doi: 10.1146/annurev-arplant-050312-120221. pmid:23373700
[3]  Casal JJ, Candia AN, Sellaro R (2014) Light perception and signalling by phytochrome A. J Exp Bot 65: 2835–2845. doi: 10.1093/jxb/ert379. pmid:24220656
[4]  Franklin KA, Quail PH (2010) Phytochrome functions in Arabidopsis development. J Exp Bot 61: 11–24. doi: 10.1093/jxb/erp304. pmid:19815685
[5]  Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, et al. (2011) The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol 62: 335–364. doi: 10.1146/annurev-arplant-042110-103759. pmid:21526969
[6]  Liu H, Liu B, Zhao C, Pepper M, Lin C (2011) The action mechanisms of plant cryptochromes. Trends Plant Sci 16: 684–691. doi: 10.1016/j.tplants.2011.09.002. pmid:21983106
[7]  Su YS, Lagarias JC (2007) Light-independent phytochrome signaling mediated by dominant GAF domain tyrosine mutants of Arabidopsis phytochromes in transgenic plants. Plant Cell 19: 2124–2139. pmid:17660358 doi: 10.1105/tpc.107.051516
[8]  Gu NN, Zhang YC, Yang HQ (2012) Substitution of a conserved glycine in the PHR domain of Arabidopsis cryptochrome 1 confers a constitutive light response. Mol Plant 5: 85–97. doi: 10.1093/mp/ssr052. pmid:21765176
[9]  Yang HQ, Wu YJ, Tang RH, Liu DM, Liu Y, et al. (2000) The C termini of Arabidopsis cryptochromes mediate a constitutive light response. Cell 103: 815–827. pmid:11114337 doi: 10.1016/s0092-8674(00)00184-7
[10]  Viczian A, Adam E, Wolf I, Bindics J, Kircher S, et al. (2012) A short amino-terminal part of Arabidopsis phytochrome A induces constitutive photomorphogenic response. Mol Plant 5: 629–641. doi: 10.1093/mp/sss035. pmid:22498774
[11]  Tilbrook K, Arongaus AB, Binkert M, Heijde M, Yin R, et al. (2013) The UVR8 UV-B photoreceptor: perception, signaling and response. Arabidopsis Book 11: e0164. doi: 10.1199/tab.0164. pmid:23864838
[12]  Jenkins GI (2014) The UV-B photoreceptor UVR8: from structure to physiology. Plant Cell 26: 21–37. doi: 10.1105/tpc.113.119446. pmid:24481075
[13]  Lau OS, Deng XW (2012) The photomorphogenic repressors COP1 and DET1: 20 years later. Trends Plant Sci 17: 584–593. doi: 10.1016/j.tplants.2012.05.004. pmid:22705257
[14]  Huang X, Ouyang X, Deng XW (2014) Beyond repression of photomorphogenesis: role switching of COP/DET/FUS in light signaling. Curr Opin Plant Biol 21C: 96–103. doi: 10.1016/j.pbi.2014.07.003
[15]  Weidler G, Zur Oven-Krockhaus S, Heunemann M, Orth C, Schleifenbaum F, et al. (2012) Degradation of Arabidopsis CRY2 is regulated by SPA proteins and phytochrome A. Plant Cell 24: 2610–2623. doi: 10.1105/tpc.112.098210. pmid:22739826
[16]  Seo HS, Watanabe E, Tokutomi S, Nagatani A, Chua NH (2004) Photoreceptor ubiquitination by COP1 E3 ligase desensitizes phytochrome A signaling. Genes Dev 18: 617–622. pmid:15031264 doi: 10.1101/gad.1187804
[17]  Shalitin D, Yang HY, Mockler TC, Maymon M, Guo HW, et al. (2002) Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation. Nature 417: 763–767. pmid:12066190 doi: 10.1038/nature00815
[18]  Debrieux D, Trevisan M, Fankhauser C (2013) Conditional involvement of CONSTITUTIVE PHOTOMORPHOGENIC1 in the degradation of phytochrome A. Plant Physiol 161: 2136–2145. doi: 10.1104/pp.112.213280. pmid:23391578
[19]  Zhu D, Maier A, Lee JH, Laubinger S, Saijo Y, et al. (2008) Biochemical characterization of Arabidopsis complexes containing CONSTITUTIVELY PHOTOMORPHOGENIC1 and SUPPRESSOR OF PHYA proteins in light control of plant development. Plant Cell 20: 2307–2323. doi: 10.1105/tpc.107.056580. pmid:18812498
[20]  Ranjan A, Dickopf S, Ullrich KK, Rensing SA, Hoecker U (2014) Functional analysis of COP1 and SPA orthologs from Physcomitrella and rice during photomorphogenesis of transgenic Arabidopsis reveals distinct evolutionary conservation. BMC Plant Biol 14: 178. doi: 10.1186/1471-2229-14-178. pmid:24985152
[21]  Deng X-W, Caspar T, Quail PH (1991) cop1: A regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Dev 5: 1172–1182. pmid:2065972 doi: 10.1101/gad.5.7.1172
[22]  Laubinger S, Fittinghoff K, Hoecker U (2004) The SPA quartet: a family of WD-repeat proteins with a central role in suppression of photomorphogenesis in Arabidopsis. Plant Cell 16: 2293–2306. pmid:15308756 doi: 10.1105/tpc.104.024216
[23]  Ordonez-Herrera N, Fackendahl P, Yu X, Schaefer S, Koncz C, et al. (2015) A cop1 spa mutant deficient in COP1 and SPA proteins reveals partial co-action of COP1 and SPA during Arabidopsis post-embryonic development and photomorphogenesis. Mol Plant 8: 479–481. doi: 10.1016/j.molp.2014.11.026. pmid:25667004
[24]  Laubinger S, Marchal V, Gentilhomme J, Wenkel S, Adrian J, et al. (2006) Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development 133: 3213–3222. pmid:16854975 doi: 10.1242/dev.02481
[25]  Rolauffs S, Fackendahl P, Sahm J, Fiene G, Hoecker U (2012) Arabidopsis COP1 and SPA genes are essential for plant elongation but not for acceleration of flowering time in response to a low red light to far-red light ratio. Plant Physiol 160: 2015–2027. doi: 10.1104/pp.112.207233. pmid:23093358
[26]  Maier A, Schrader A, Kokkelink L, Falke C, Welter B, et al. (2013) Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis. Plant J 74: 638–651. doi: 10.1111/tpj.12153. pmid:23425305
[27]  Jang S, Marchal V, Panigrahi KC, Wenkel S, Soppe W, et al. (2008) Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. Embo J 27: 1277–1288. doi: 10.1038/emboj.2008.68. pmid:18388858
[28]  Liu LJ, Zhang YC, Li QH, Sang Y, Mao J, et al. (2008) COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell 20: 292–306. doi: 10.1105/tpc.107.057281. pmid:18296627
[29]  Wang CQ, Sarmast MK, Jiang J, Dehesh K (2015) The transcriptional regulator BBX19 promotes hypocotyl growth by facilitating COP1-mediated EARLY FLOWERING3 degradation in Arabidopsis. Plant Cell: 27: 1128–1139. doi: 10.1105/tpc.15.00044. pmid:25841036
[30]  Ranjan A, Fiene G, Fackendahl P, Hoecker U (2011) The Arabidopsis repressor of light signaling SPA1 acts in the phloem to regulate seedling de-etiolation, leaf expansion and flowering time. Development 138: 1851–1862. doi: 10.1242/dev.061036. pmid:21447551
[31]  Jang IC, Yang JY, Seo HS, Chua NH (2005) HFR1 is targeted by COP1 E3 ligase for post-translational proteolysis during phytochrome A signaling. Genes Dev 19: 593–602. pmid:15741320 doi: 10.1101/gad.1247205
[32]  Yang J, Lin R, Hoecker U, Liu B, Xu L, et al. (2005) Repression of light signaling by Arabidopsis SPA1 involves post-translational regulation of HFR1 protein accumulation. Plant J 43: 131–141. pmid:15960622 doi: 10.1111/j.1365-313x.2005.02433.x
[33]  Hoecker U, Xu Y, Quail PH (1998) SPA1: A new genetic locus involved in phytochrome A-specific signal transduction. Plant Cell 10: 19–33. pmid:9477570 doi: 10.2307/3870626
[34]  Jackson S, Xiong Y (2009) CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem Sci 34: 562–570. doi: 10.1016/j.tibs.2009.07.002. pmid:19818632
[35]  Biedermann S, Hellmann H (2011) WD40 and CUL4-based E3 ligases: lubricating all aspects of life. Trends Plant Sci 16: 38–46. doi: 10.1016/j.tplants.2010.09.007. pmid:20965772
[36]  Chen H, Huang X, Gusmaroli G, Terzaghi W, Lau OS, et al. (2010) Arabidopsis CULLIN4-damaged DNA binding protein 1 interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1-SUPPRESSOR OF PHYA complexes to regulate photomorphogenesis and flowering time. Plant Cell 22: 108–123. doi: 10.1105/tpc.109.065490. pmid:20061554
[37]  Hoecker U, Quail PH (2001) The phytochrome A-specific signaling intermediate SPA1 interacts directly with COP1, a constitutive repressor of light signaling in Arabidopsis. J Biol Chem 276: 38173–38178. pmid:11461903 doi: 10.3410/f.1000582.16505
[38]  Saijo Y, Sullivan JA, Wang H, Yang J, Shen Y, et al. (2003) The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes Dev 17: 2642–2647. pmid:14597662 doi: 10.1101/gad.1122903
[39]  Holm M, Hardtke CS, Gaudet R, Deng XW (2001) Identification of a structural motif that confers specific interaction with the WD40 repeat domain of Arabidopsis COP1. EMBO J 20: 118–127. pmid:11226162 doi: 10.1093/emboj/20.1.118
[40]  Hoecker U, Tepperman JM, Quail PH (1999) SPA1, a WD-repeat protein specific to phytochrome A signal transduction. Science 284: 496–499. pmid:10205059 doi: 10.1126/science.284.5413.496
[41]  Deng XW, Matsui M, Wei N, Wagner D, Chu AM, et al. (1992) COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a G beta homologous domain. Cell 71: 791–801. pmid:1423630 doi: 10.1016/0092-8674(92)90555-q
[42]  Balcerowicz M, Fittinghoff K, Wirthmueller L, Maier A, Fackendahl P, et al. (2011) Light exposure of Arabidopsis seedlings causes rapid de-stabilization as well as selective post-translational inactivation of the repressor of photomorphogenesis SPA2. Plant J 65: 712–723. doi: 10.1111/j.1365-313X.2010.04456.x. pmid:21235648
[43]  Pacin M, Legris M, Casal JJ (2014) Rapid decline in nuclear CONSTITUTIVE PHOTOMORPHOGENESIS1 abundance anticipates the stabilization of its target ELONGATED HY5 in the light. Plant Physiol 164: 1134–1138. doi: 10.1104/pp.113.234245. pmid:24434030
[44]  von Arnim AG, Deng X-W (1994) Light inactivation of Arabidopsis photomorphogenic repressor COP1 involves a cell-specific regulation of its nucleocytoplasmic partitioning. Cell 79: 1035–1045. pmid:8001131 doi: 10.1016/0092-8674(94)90034-5
[45]  Fankhauser C, Ulm R (2011) Light-regulated interactions with SPA proteins underlie cryptochrome-mediated gene expression. Genes Dev 25: 1004–1009. doi: 10.1101/gad.2053911. pmid:21576261
[46]  Liu B, Zuo Z, Liu H, Liu X, Lin C (2011) Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Genes Dev 25: 1029–1034. doi: 10.1101/gad.2025011. pmid:21511871
[47]  Lian HL, He SB, Zhang YC, Zhu DM, Zhang JY, et al. (2011) Blue-light-dependent interaction of cryptochrome 1 with SPA1 defines a dynamic signaling mechanism. Genes Dev 25: 1023–1028. doi: 10.1101/gad.2025111. pmid:21511872
[48]  Lu XD, Zhou CM, Xu PB, Luo Q, Lian HL, et al. (2015) Red light-dependent interaction of phyB with SPA1 promotes COP1–SPA1 dissociation and photomorphogenic development in Arabidopsis. Mol Plant 8: 467–478. doi: 10.1016/j.molp.2014.11.025. pmid:25744387
[49]  Sheerin DJ, Menon C, zur Oven-Krockhaus S, Enderle B, Zhu L, et al. (2015) Light-activated phytochrome A and B interact with members of the SPA family to promote photomorphogenesis in Arabidopsis by reorganizing the COP1/SPA complex. Plant Cell 27: 189–201. doi: 10.1105/tpc.114.134775. pmid:25627066
[50]  Zuo Z, Liu H, Liu B, Liu X, Lin C (2011) Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis. Curr Biol 21: 841–847. doi: 10.1016/j.cub.2011.03.048. pmid:21514160
[51]  Fittinghoff K, Laubinger S, Nixdorf M, Fackendahl P, Baumgardt RL, et al. (2006) Functional and expression analysis of Arabidopsis SPA genes during seedling photomorphogenesis and adult growth. Plant J 47: 577–590. pmid:16813571 doi: 10.1111/j.1365-313x.2006.02812.x
[52]  Osterlund MT, Deng XW (1998) Multiple photoreceptors mediate the light-induced reduction of GUS-COP1 from Arabidopsis hypocotyl nuclei. Plant J 16: 201–208. pmid:9839465 doi: 10.1046/j.1365-313x.1998.00290.x
[53]  Osterlund MT, Wei N, Deng XW (2000) The roles of photoreceptor systems and the COP1-targeted destabilization of HY5 in light control of arabidopsis seedling development. Plant Physiol 124: 1520–1524. pmid:11115869 doi: 10.1104/pp.124.4.1520
[54]  Baumgardt RL, Oliverio KA, Casal JJ, Hoecker U (2002) SPA1, a component of phytochrome A signal transduction, regulates the light signaling current. Planta 215: 745–753. pmid:12244439 doi: 10.1007/s00425-002-0801-x
[55]  Laubinger S, Hoecker U (2003) The SPA1-like proteins SPA3 and SPA4 repress photomorphogenesis in the light. Plant J 35: 373–385. pmid:12887588 doi: 10.1046/j.1365-313x.2003.01813.x
[56]  Xu D, Lin F, Jiang Y, Huang X, Li J, et al. (2014) The RING-finger E3 ubiquitin ligase COP1 SUPPRESSOR1 negatively regulates COP1 abundance in maintaining COP1 homeostasis in dark-grown Arabidopsis seedlings. Plant Cell 26: 1981–1991. pmid:24838976 doi: 10.1105/tpc.114.124024
[57]  Dornan D, Shimizu H, Mah A, Dudhela T, Eby M, et al. (2006) ATM engages autodegradation of the E3 ubiquitin ligase COP1 after DNA damage. Science 313: 1122–1126. pmid:16931761 doi: 10.1126/science.1127335
[58]  Reed JW, Nagatani A, Elich TD, Fagan M, Chory J (1994) Phytochrome A and Phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant Physiology 104: 1139–1149. pmid:12232154
[59]  Parks BM, Quail PH (1993) Hy8, a new class of Arabidopsis long hypocotyl mutants deficient in functional phytochrome A. Plant Cell 5: 39–48. pmid:8439743 doi: 10.1105/tpc.5.1.39
[60]  Quail PH, Briggs WR, Chory J, Hangarter RP, Harberd NP, et al. (1994) Spotlight on phytochrome nomenclature. Plant Cell 6: 468–471. pmid:12244245 doi: 10.2307/3869926
[61]  Smith H, Xu Y, Quail PH (1997) Antagonistic but complementary actions of phytochromes A and B allow seedling de-etiolation. Plant Physiol 114: 637–641. pmid:9193095 doi: 10.1104/pp.114.2.637
[62]  Mazzella MA, Cerdan PD, Staneloni RJ, Casal JJ (2001) Hierarchical coupling of phytochromes and cryptochromes reconciles stability and light modulation of Arabidopsis development. Development 128: 2291–2299. pmid:11493548
[63]  Deng XW, Quail PH (1992) Genetic and phenotypic characterization of cop1 mutants of Arabidopsis thaliana. Plant J 2: 83–95. doi: 10.1111/j.1365-313x.1992.00083.x
[64]  McNellis TW, Von Arnim AG, Araki T, Komeda Y, Miséra S, et al. (1994) Genetic and molecular analysis of an allelic series of cop1 mutants suggests functional roles for the multiple protein domains. Plant Cell 6: 487–500. pmid:8205001 doi: 10.2307/3869929
[65]  Yoo SY, Bomblies K, Yoo SK, Yang JW, Choi MS, et al. (2005) The 35S promoter used in a selectable marker gene of a plant transformation vector affects the expression of the transgene. Planta 221: 523–530. pmid:15682278 doi: 10.1007/s00425-004-1466-4
[66]  Xia YJ, Nikolau BJ, Schnable PS (1997) Developmental and hormonal regulation of the Arabidopsis CER2 gene that codes for a nuclear-localized protein required for the normal accumulation of cuticular waxes. Plant Physiology 115: 925–937. pmid:9390429 doi: 10.1104/pp.115.3.925
[67]  Lin C, Ahmad M, Gordon D, Cashmore AR (1995) Expression of an Arabidopsis cryptochrome gene in transgenic tobacco results in hypersensitivity to blue, UV-a, and green light. Proc NatAcad Sci USA 92: 8423–8427. doi: 10.1073/pnas.92.18.8423
[68]  Ahmad M, Jarillo JA, Cashmore AR (1998) Chimeric proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability. Plant Cell 10: 197–207. pmid:9490743 doi: 10.2307/3870698

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133