全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2015 

The Arabidopsis RCC1 Family Protein TCF1 Regulates Freezing Tolerance and Cold Acclimation through Modulating Lignin Biosynthesis

DOI: 10.1371/journal.pgen.1005471

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cell water permeability and cell wall properties are critical to survival of plant cells during freezing, however the underlying molecular mechanisms remain elusive. Here, we report that a specifically cold-induced nuclear protein, Tolerant to Chilling and Freezing 1 (TCF1), interacts with histones H3 and H4 and associates with chromatin containing a target gene, BLUE-COPPER-BINDING PROTEIN (BCB), encoding a glycosylphosphatidylinositol-anchored protein that regulates lignin biosynthesis. Loss of TCF1 function leads to reduced BCB transcription through affecting H3K4me2 and H3K27me3 levels within the BCB gene, resulting in reduced lignin content and enhanced freezing tolerance. Furthermore, plants with knocked-down BCB expression (amiRNA-BCB) under cold acclimation had reduced lignin accumulation and increased freezing tolerance. The pal1pal2 double mutant (lignin content reduced by 30% compared with WT) also showed the freezing tolerant phenotype, and TCF1 and BCB act upstream of PALs to regulate lignin content. In addition, TCF1 acts independently of the CBF (C-repeat binding factor) pathway. Our findings delineate a novel molecular pathway linking the TCF1-mediated cold-specific transcriptional program to lignin biosynthesis, thus achieving cell wall remodeling with increased freezing tolerance.

References

[1]  Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Biol 50: 571–599. doi: 10.1146/annurev.arplant.50.1.571
[2]  Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Ann Rev Plant Physiol 35: 543–584. doi: 10.1146/annurev.pp.35.060184.002551
[3]  Uemura M, Joseph RA, Steponkus PL (1995) Cold acclimation of Arabidopsis thaliana (effect on plasma membrane lipid composition and freeze-induced lesions). Plant Physiol 109: 15–30. pmid:12228580 doi: 10.1007/978-1-4899-0277-1_15
[4]  Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94: 1035–1040. pmid:9023378 doi: 10.1073/pnas.94.3.1035
[5]  Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280: 104–106. pmid:9525853 doi: 10.1126/science.280.5360.104
[6]  Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 101: 3985–3990. pmid:15004278 doi: 10.1073/pnas.0303029101
[7]  Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, et al. (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17: 1043–1054. pmid:12672693 doi: 10.1101/gad.1077503
[8]  Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, et al. (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281: 37636–37645. pmid:17015446 doi: 10.1074/jbc.m605895200
[9]  Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21: 972–984. doi: 10.1105/tpc.108.063958. pmid:19270186
[10]  Shi Y, Tian S, Hou L, Huang X, Zhang X, et al. (2012) Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell 24: 2578–2595. doi: 10.1105/tpc.112.098640. pmid:22706288
[11]  Ding Y, Li H, Zhang X, Xie Q, Gong Z, et al. (2015) OST1 Kinase Modulates Freezing Tolerance by Enhancing ICE1 Stability in Arabidopsis. Dev Cell mailto:32:278–289.
[12]  Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14: 1675–1690. pmid:12172015 doi: 10.1105/tpc.003483
[13]  Zhu J, Shi H, Lee BH, Damsz B, Cheng S, et al. (2004) An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc Natl Acad Sci USA 101: 9873–9878. pmid:15205481 doi: 10.1073/pnas.0403166101
[14]  Zhu J, Jeong JC, Zhu Y, Sokolchik I, Miyazaki S, et al. (2008) Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proc Natl Acad Sci USA 105: 4945–4950. doi: 10.1073/pnas.0801029105. pmid:18356294
[15]  Moellering ER, Muthan B, Benning C (2010). Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. Science 330: 226–228. doi: 10.1126/science.1191803. pmid:20798281
[16]  Shi H, Ye T, Zhong B, Liu X, Jin R, Chan Z (2014) AtHAP5A modulates freezing stress resistance in Arabidopsis through binding to CCAAT motif of AtXTH21. New Phytol 203: 554–567. doi: 10.1111/nph.12812. pmid:24739069
[17]  Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23: 893–902. doi: 10.1046/j.1365-3040.2000.00611.x
[18]  Yamada T, Kuroda K, Jitsuyama Y, Takezawa D, Arakawa K, Fujikawa S (2002) Roles of the plasma membrane and the cell wall in the responses of plant cells to freezing. Planta 215: 770–778. pmid:12244442 doi: 10.1007/s00425-002-0814-5
[19]  Thalhammer A, Bryant G, Sulpice R, Hincha DK (2014). Disordered cold regulated15 proteins protect chloroplast membranes during freezing through binding and folding, but do not stabilize chloroplast enzymes in vivo. Plant Physiol 166: 190–201. doi: 10.1104/pp.114.245399. pmid:25096979
[20]  Hématy K, Cherk C, Somerville S (2009). Host-pathogen warfare at the plant cell wall. Curr Opin Plant Boil 12: 406–413. doi: 10.1016/j.pbi.2009.06.007
[21]  Szymanski DB, Cosgrove DJ (2009) Dynamic coordination of cytoskeletal and cell wall systems during plant cell morphogenesis. Curr Biol 19: 800–811. doi: 10.1016/j.cub.2009.07.056
[22]  Denness L, McKenna JF, Segonzac C, Wormit A, Madhou P, et al. (2011) Cell wall damage-induced lignin biosynthesis is regulated by a Reactive Oxygen Species-and Jasmonic Acid-dependent process in Arabidopsis. Plant Physiol 156: 1364–1374. doi: 10.1104/pp.111.175737. pmid:21546454
[23]  Temple BRS, Jones AM (2007) The plant heterotrimeric G-protein complex. Annu Rev Plant Biol 58: 249–266. pmid:17201690 doi: 10.1146/annurev.arplant.58.032806.103827
[24]  Seifert GJ, Blaukopf C (2010) Irritable walls: the plant extracellular matrix and signaling. Plant Physiol 153: 467–478. doi: 10.1104/pp.110.153940. pmid:20154095
[25]  Tsang DL, Edmond C, Harrington JL, Nühse TS (2011) Cell wall integrity controls root elongation via a general 1-Aminocyclopropane-1-Carboxylic Acid-dependent, Ethylene-independent pathway. Plant Physiol 156: 596–604. doi: 10.1104/pp.111.175372. pmid:21508182
[26]  Taylor-Teeples M, Lin L, de Lucas M, Turco G, Toal TW, et al. (2015) An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517: 571–575. doi: 10.1038/nature14099. pmid:25533953
[27]  Ellis C, Karafyllidis I, Wasternack C, Turner JG (2002) The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14: 1557–1566. pmid:12119374 doi: 10.1105/tpc.002022
[28]  Manfield IW, Orfila C, Mccartney L, Harholt J, Bernal AJ, et al. (2004) Novel cell wall architecture of isoxaben-habituated Arabidopsis suspension-cultured cells: global transcript profiling and cellular analysis. Plant J 40: 260–275. pmid:15447652 doi: 10.1111/j.1365-313x.2004.02208.x
[29]  Hamann T, Bennett M, Mansfield J, Somerville C (2009) Identification of cell-wall stress as a hexose-dependent and osmosensitive regulator of plant responses. Plant J 57: 1015–1026. doi: 10.1111/j.1365-313X.2008.03744.x. pmid:19036034
[30]  Boorsma A, de Nobel H, ter Riet B, Bargmann B, Brul S, et al. (2004) Characterization of the transcriptional response to cell wall stress in Saccharomyces cerevisiae. Yeast 21: 413–427. pmid:15116342 doi: 10.1002/yea.1109
[31]  Levin DE (2005) Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol. Mol Bio Rev 69: 262. doi: 10.1128/mmbr.69.2.262-291.2005
[32]  Moura JC, Bonine CA, de Oliveira FVJ, Dornelas MC, Mazzafera P (2010) Abiotic and biotic stresses and changes in lignin content and composition in plants. J Integr Plant Biol 52: 360–76. doi: 10.1111/j.1744-7909.2010.00892.x. pmid:20377698
[33]  Le MQ, Pagter M, Hincha DK (2015) Global changes in gene expression, assayed by microarray hybridization and quantitative RT-PCR, during acclimation of three Arabidopsis thaliana accessions to sub-zero temperatures after cold acclimation. Plant Mol Biol 87:1–15 doi: 10.1007/s11103-014-0256-z. pmid:25311197
[34]  Rajashekar C, Burke MJ (1996) Freezing characteristics of rigid plant tissues (development of cell tension during extracellular freezing). Plant Physiol 111: 597–603. pmid:12226313
[35]  Ball MC, Canny MJ, Huang CX, Heady RD (2004) Structural changes in acclimated and unacclimated leaves during freezing and thawing. Func Plant Biol 31: 29–40. doi: 10.1071/fp03164
[36]  Ball MC, Canny MJ, Huang CX, Egerton JJG, Wolfe J (2006) Freeze/thaw-induced embolism depends on nadir temperature: the heterogeneous hydration hypothesis. Plant Cell Environ 29: 729–745. pmid:17087458 doi: 10.1111/j.1365-3040.2005.01426.x
[37]  Ferrer JL, Austin MB, Stewart C Jr, Noel JP (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46: 356–370. doi: 10.1016/j.plaphy.2007.12.009. pmid:18272377
[38]  Shafi A, Dogra V, Gill T, Ahuja PS, Sreenivasulu Y (2014) Simultaneous over-expression of PaSOD and RaAPX in transgenic Arabidopsis thaliana confers cold stress tolerance through increase in vascular lignifications. PLoS One 9: e110302. doi: 10.1371/journal.pone.0110302. pmid:25330211
[39]  Raes J, Rohde A, Christensen JH, Van de Peer Y, Boerjan W (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133: 1051–1071. pmid:14612585 doi: 10.1104/pp.103.026484
[40]  Brown DM, Zeef LA, Ellis J, Goodacre R, Turner SR (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17: 2281–2295. pmid:15980264 doi: 10.1105/tpc.105.031542
[41]  Cassan-Wang H, Goué N, Saidi MN, Legay S, Sivadon P, et al. (2013) Identification of novel transcription factors regulating secondary cell wall formation in Arabidopsis. Front Plant Sci 11: 189. doi: 10.3389/fpls.2013.00189
[42]  Lu S, Li Q, Wei H, Chang MJ, Tunlaya-Anukit S, et al. (2013) Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proc. Natl. Acad. Sci. U S A 110: 10848–10853. doi: 10.1073/pnas.1308936110. pmid:23754401
[43]  Petrik DL, Karlen SD, Cass CL, Padmakshan D, Lu F, et al. (2014) p-Coumaroyl-CoA:monolignol transferase (PMT) acts specifically in the lignin biosynthetic pathway in Brachypodium distachyon. Plant J 77: 713–726. doi: 10.1111/tpj.12420. pmid:24372757
[44]  Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7: 1085–1097. pmid:12242399 doi: 10.1105/tpc.7.7.1085
[45]  Ross W, Ron S (1995) Lignin Biosynthesis. Plant Cell 7:1001–1013. pmid:12242395 doi: 10.2307/3870053
[46]  Kim DS, Hwang BK (2014) An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. J Exp Bot 65:2295–2306. doi: 10.1093/jxb/eru109. pmid:24642849
[47]  Olsen KM, Lea US, Slimestad R, Verheul M, Lillo C (2008) Differential expression of four Arabidopsis PAL genes; PAL1 and PAL2 have functional specialization in abiotic environmental-triggered flavonoid synthesis. J Plant Physiol 165:1491–1499. doi: 10.1016/j.jplph.2007.11.005. pmid:18242769
[48]  Cass CL, Peraldi A, Dowd PF, Mottiar Y, Santoro N, et al. (2015) Effects of PHENYLALANINE AMMONIA LYASE (PAL) knockdown on cell wall composition, biomass digestibility, and biotic and abiotic stress responses in Brachypodium. J Exp Bot 66:4317–4335. doi: 10.1093/jxb/erv269. pmid:26093023
[49]  Ezaki B, Sasaki K, Matsumoto H, Nakashima S (2005) Functions of two genes in aluminium (Al) stress resistance: repression of oxidative damage by the AtBCB gene and promotion of efflux of Al ions by the NtGDI1gene. J Exp Bot 56: 2661–2671. pmid:16143720 doi: 10.1093/jxb/eri259
[50]  Huang J, Gu M, Lai Z, Fan B, Shi K, et al. (2010) Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol 153: 1526–1538. doi: 10.1104/pp.110.157370. pmid:20566705
[51]  Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, et al. (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50: 347–363. pmid:17376166 doi: 10.1111/j.1365-313x.2007.03052.x
[52]  Ohtsubo M, Okazaki H, Nishimoto T (1989) The RCC1 protein, a regulator for the onset of chromosome condensation locates in the nucleus and binds to DNA. J Cell Biol 109: 1389–1397. pmid:2677018 doi: 10.1083/jcb.109.4.1389
[53]  Renault L, Nassar N, Vetter I, Becker J, Klebe C, et al. (1998) The 1.7 A crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller. Nature 392: 97–101. pmid:9510255
[54]  Bischoff FR, Ponstingl H (1991) Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Nature 354: 80–82. pmid:1944575 doi: 10.1038/354080a0
[55]  Nemergut ME, Lindsay ME, Brownawell AM, Macara IG (2002) Ran-binding protein 3 links Crm1 to the Ran guanine nucleotide exchange factor. J Biol Chem 277: 17385–17388. pmid:11932251 doi: 10.1074/jbc.c100620200
[56]  Rohde A, Morreel K, Ralph J, Goeminne G, Hostyn V, et al. (2004) Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. Plant Cell 16:2749–2771. pmid:15377757 doi: 10.1105/tpc.104.023705
[57]  Li HY, Wirtz D, Zheng Y (2003) A mechanism of coupling RCC1 mobility to RanGTP production on the chromatin in vivo. J Cell Biol 160: 635–644. pmid:12604592 doi: 10.1083/jcb.200211004
[58]  Cloix C, Jenkins GI (2008) Interaction of the Arabidopsis UV-B-specific signaling component UVR8 with chromatin. Mol Plant 1: 118–128. doi: 10.1093/mp/ssm012. pmid:20031919
[59]  Van Gysel A, Van Montagu M, Inzé D (1993) A negatively light-regulated gene from Arabidopsis thaliana encodes a protein showing high similarity to blue copper-binding proteins. Gene 136: 79–85. pmid:8294044 doi: 10.1016/0378-1119(93)90450-h
[60]  Borner GH, Lilley KS, Stevens TJ, Dupree P (2003) Identification of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A proteomic and genomic analysis. Plant Physiol 132: 568–77. pmid:12805588 doi: 10.1104/pp.103.021170
[61]  Mishina TE, Zeier J (2007) Bacterial non-host resistance: interactions of Arabidopsis with non-adapted Pseudomonas syringae strains. Physiol Plant 131: 448–461. doi: 10.1111/j.1399-3054.2007.00977.x. pmid:18251883
[62]  Huang X, Yang P, Ouyang X, Chen L, Deng XW (2014) Photoactivated UVR8-COP1 module determines photomorphogenic UV-B signaling output in Arabidopsis. PLoS Genet 10: e1004218. doi: 10.1371/journal.pgen.1004218. pmid:24651064
[63]  Levitt J (1980) Chilling, freezing, and high temperature stress. Responses of plants to environmental stresses; London: Academic Press I: 497.
[64]  Sakai A, Larcher W (1987) Ecological Studies. Frost survival of plants. Responses and adaptation to freezing stress; Berlin: Springer-Verlag 62: 321.
[65]  Alberdi M, Corcuera LJ (1991) Cold acclimation in plants. Phytochemistry 30: 3177–3184.
[66]  Domon JM, Baldwin L, Acket S, Caudeville E, Arnoult S, et al. (2013) Cell wall compositional modifications of Miscanthus ecotypes in response to cold acclimation. Phytochemistry 85: 51–61. doi: 10.1016/j.phytochem.2012.09.001. pmid:23079767
[67]  Zuther E, Schulz E, Childs LH, Hincha DK. (2012) Clinal variation in the non-acclimated and cold-acclimated freezing tolerance of Arabidopsis thaliana accessions. Plant Cell Environ 35: 1860–1878. doi: 10.1111/j.1365-3040.2012.02522.x. pmid:22512351
[68]  Ji H, Wang S, Li K, Szakonyi D, Koncz C, et al. (2014) PRL1 modulates root stem cell niche activity and meristem size through WOX5 and PLTs in Arabidopsis. Plant J 81: 399–412. doi: 10.1111/tpj.12733. pmid:25438658
[69]  Gendrel AV, Lippman Z, Yordan C, Colot V, Martienssen RA (2002) Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1. Science 297: 1871–1873. pmid:12077425 doi: 10.1126/science.1074950
[70]  Tokunaga N, Sakakibara N, Umezawa T, Ito Y, Fukuda H, et al. (2005). Involvement of extracellular dilignols in lignification during tracheary element differentiation of isolated Zinnia mesophyll cells. Plant Cell Physiol 46: 224–232. pmid:15659440 doi: 10.1093/pcp/pci017
[71]  Fukuda H, Komamine A (1982) Lignin synthesis and its related enzymes as markers of tracheary-element differentiation in single cells isolated from the mesophyll of Zinnia elegans. Planta 155:423–430 doi: 10.1007/BF00394471. pmid:24271974

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133