全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2015 

Differential Expression of Ecdysone Receptor Leads to Variation in Phenotypic Plasticity across Serial Homologs

DOI: 10.1371/journal.pgen.1005529

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bodies are often made of repeated units, or serial homologs, that develop using the same core gene regulatory network. Local inputs and modifications to this network allow serial homologs to evolve different morphologies, but currently we do not understand which modifications allow these repeated traits to evolve different levels of phenotypic plasticity. Here we describe variation in phenotypic plasticity across serial homologous eyespots of the butterfly Bicyclus anynana, hypothesized to be under selection for similar or different functions in the wet and dry seasonal forms. Specifically, we document the presence of eyespot size and scale brightness plasticity in hindwing eyespots hypothesized to vary in function across seasons, and reduced size plasticity and absence of brightness plasticity in forewing eyespots hypothesized to have the same function across seasons. By exploring the molecular and physiological causes of this variation in plasticity across fore and hindwing serial homologs we discover that: 1) temperature experienced during the wandering stages of larval development alters titers of an ecdysteroid hormone, 20-hydroxyecdysone (20E), in the hemolymph of wet and dry seasonal forms at that stage; 2) the 20E receptor (EcR) is differentially expressed in the forewing and hindwing eyespot centers of both seasonal forms during this critical developmental stage; and 3) manipulations of EcR signaling disproportionately affected hindwing eyespots relative to forewing eyespots. We propose that differential EcR expression across forewing and hindwing eyespots at a critical stage of development explains the variation in levels of phenotypic plasticity across these serial homologues. This finding provides a novel signaling pathway, 20E, and a novel molecular candidate, EcR, for the regulation of levels of phenotypic plasticity across body parts or serial homologs.

References

[1]  Rueffler C, Hermisson J, Wagner GP. Evolution of functional specialization and division of labor. Proc Natl Acad Sci U S A. 2012;109(6):E326–E35. doi: 10.1073/pnas.1110521109. pmid:22308336
[2]  Weatherbee SD, Halder G, Kim J, Hudson A, Carroll SB. Ultrabithorax regulates genes at several levels of the wing-patterning hierarchy to shape the development of the Drosophila haltere. Gen Dev. 1998;12(10):1474–82. doi: 10.1101/gad.12.10.1474
[3]  Averof M, Patel NH. Crustacean appendage evolution associated with changes in Hox gene expression. Nature. 1997;388(6643):682–6. pmid:ISI:A1997XQ86300051. doi: 10.1038/41786
[4]  Liubicich DM, Serano JM, Pavlopoulos A, Kontarakis Z, Protas ME, Kwan E, et al. Knockdown of Parhyale Ultrabithorax recapitulates evolutionary changes in crustacean appendage morphology. Proc Natl Acad Sci U S A. 2009;106(33):13892–6. doi: 10.1073/pnas.0903105106. pmid:19666517
[5]  Moran NA. The evolutionary maintenance of alternative phenotypes. Am Nat. 1992;139(5):971–89. pmid:ISI:A1992HU07100005. doi: 10.1086/285369
[6]  Oliver JC, Tong X, Gall LF, Piel WH, Monteiro A. A single origin for nymphalid butterfly eyespots followed by widespread loss of associated gene expression. PLoS Genet. 2012;8(8):e1002893. doi: 10.1371/journal.pgen.1002893. pmid:22916033
[7]  Oliver JC, Beaulieu JM, Gall LF, Piel WH, Monteiro A. Nymphalid eyespot serial homologs originate as a few individualized modules. Proc R Soc Lond B. in review. doi: 10.1098/rspb.2013.3262
[8]  Schachat SR, Oliver JC, Monteiro A. Nymphalid eyespots are co-opted to novel wing locations following a similar pattern in independent lineages. BMC Evol Biol. 2015;15(1):300. doi: 10.1186/s12862-015-0300-x
[9]  Olofsson M, Vallin A, Jakobsson S, Wiklund C. Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths. PloS ONE. 2010;5(5):e10798. doi: 10.1371/journal.pone.0010798. pmid:20520736
[10]  Robertson KA, Monteiro A. Female Bicyclus anynana butterflies choose males on the basis of their UV-reflective dorsal eyespot pupils. Proc R Soc B. 2005;272 1541–6. pmid:16048768 doi: 10.1098/rspb.2005.3142
[11]  Vallin A, Jakobsson S, Lind J, Wiklund C. Prey survival by predator intimidation: an experimental study of peacock butterfly defence against blue tits. Proc R Soc B. 2005;272(1569):1203–7. pmid:ISI:000230563200002. doi: 10.1098/rspb.2004.3034
[12]  Oliver JC, Robertson KA, Monteiro A. Accomodating natural and sexual selection in butterfly wing pattern evolution. Proc R Soc B. 2009;276:2369–75. doi: 10.1098/rspb.2009.0182. pmid:19364741
[13]  Kodandaramaiah U. The evolutionary significance of butterfly eyespots. Behav Ecol. 2011. doi: 10.1093/beheco/arr123
[14]  Brakefield PM, Larsen TB. The evolutionary significance of dry and wet season forms in some tropical butterflies. Biol J Linn Soc. 1984;22:1–12. doi: 10.1111/j.1095-8312.1984.tb00795.x
[15]  Brakefield PM, Reitsma N. Phenotypic plasticity, seasonal climate and the population biology of Bicyclus butterflies (Satyridae) in Malawi. Ecol Entomol. 1991;16:291–303. doi: 10.1111/j.1365-2311.1991.tb00220.x
[16]  Brakefield PM, Frankino WA. Polyphenisms in Lepidoptera: Multidisciplinary approaches to studies of evolution and development. In: Whitman DW, Ananthakrishnan TN, editors. Phenotypic Plasticity in Insects Mechanisms and Consequences. Plymouth: Science Publishers; 2009. p. 281–312.
[17]  Prudic KL, Stoehr AM, Wasik BW, Monteiro A. Invertebrate predators attack eyespots and promote the evolution of phenotypic plasticity. Proc Biol Sci. 2015;282(1798):20141531. doi: 10.1098/rspb.2014.1531. pmid:25392465
[18]  Nijhout HF. Control mechanisms of polyphenic development in insects. Bioscience. 1999;49(3):181–92. doi: 10.2307/1313508
[19]  Simpson SJ, Sword GA, Lo N. Polyphenism in Insects. Curr Biol. 2011;21(18):R738–R49. doi: 10.1016/j.cub.2011.06.006. pmid:21959164
[20]  Windig JJ. Reaction norms and the genetic-basis of phenotypic plasticity in the wing pattern of the butterfly Bicyclus anynana. J Evol Biol. 1994;7(6):665–95. doi: 10.1046/j.1420-9101.1994.7060665.x
[21]  Ghiradella H. Structure and Development of Iridescent Butterfly Scales—Lattices and Laminae. J Morphol. 1989;202(1):69–88. pmid:ISI:A1989AV85800005. doi: 10.1002/jmor.1052020106
[22]  Vukusic P, Sambles JR, Lawrence CR, Wootton RJ. Quantified interference and diffraction in single Morpho butterfly scales. Proc R Soc B. 1999;266(1427):1403–11. pmid:ISI:000081833200001. doi: 10.1098/rspb.1999.0794
[23]  Jindra M, Malone F, Hiruma K, Riddiford LM. Developmental profiles and ecdysteroid regulation of the mRNAs for two ecdysone receptor isoforms in the epidermis and wings of the tobacco hornworm, Manduca sexta. Dev Biol. 1996;180(1):258–72. pmid:ISI:A1996VW70000020. doi: 10.1006/dbio.1996.0299
[24]  Koch PB, Merk R, Reinhardt R, Weber P. Localization of ecdysone receptor protein during colour pattern formation in wings of the butterfly Precis coenia (Lepidoptera: Nymphalidae) and co-expression with Distal-less protein. Dev Genes Evol. 2003;212(12):571–84. pmid:12536321. doi: 10.3410/f.1014252.193179
[25]  Zera AJ. Endocrine analysis in evolutionary-developmental studies of insect polymorphism: hormone manipulation versus direct measurement of hormonal regulators. Evol Dev. 2007;9(5):499–513. pmid:ISI:000249321200009. doi: 10.1111/j.1525-142x.2007.00181.x
[26]  Dinan L, Whiting P, Girault JP, Lafont R, Dhadialla TS, Cress DE, et al. Cucurbitacins are insect steroid hormone antagonists acting at the ecdysteroid receptor. Biochem J. 1997;327:643–50. pmid:ISI:A1997YF86500003. doi: 10.1042/bj3270643
[27]  Oliver JC, Ramos DM, Prudic KL, Monteiro A. Temporal gene expression variation associated with eyespot size plasticity in Bicyclus anynana. PloS ONE. 2013;8(6):e65830. doi: 10.1371/journal.pone.0065830. pmid:23762437
[28]  Snell-Rood EC, Moczek AP. Insulin Signaling as a Mechanism Underlying Developmental Plasticity: The Role of FOXO in a Nutritional Polyphenism. PloS ONE. 2012;7(4). doi: 10.1371/journal.pone.0034857
[29]  Tang HY, Smith-Caldas MSB, Driscoll MV, Salhadar S, Shingleton AW. FOXO Regulates Organ-Specific Phenotypic Plasticity In Drosophila. PLoS Genet. 2011;7(11). doi: 10.1371/journal.pgen.1002373
[30]  Emlen DJ, Warren IA, Johns A, Dworkin I, Lavine LC. A Mechanism of Extreme Growth and Reliable Signaling in Sexually Selected Ornaments and Weapons. Science. 2012;337(6096):860–4. doi: 10.1126/science.1224286. pmid:22837386
[31]  Hyun S. Body size regulation and insulin-like growth factor signaling. Cellular and Molecular Life Sciences. 2013;70(13):2351–65. doi: 10.1007/s00018-013-1313-5. pmid:23508807
[32]  Koch PB, Buckmann D. Hormonal-control of seasonal morphs by the timing of ecdysteroid release in Arashnia levana L (Nymphalidae, Lepidoptera). J Insect Physiol. 1987;33(11):823–9. pmid:ISI:A1987K176700006. doi: 10.1016/0022-1910(87)90030-8
[33]  Rountree DB, Nijhout HF. Hormonal control of a seasonal polyphenism in Precis coenia (Lepidoptera: Nymphalidae). J Insect Physiol. 1995;41(11):987–92. doi: 10.1016/0022-1910(95)00046-w
[34]  Brakefield PM, Kesbeke F, Koch PB. The regulation of phenotypic plasticity of eyespots in the butterfly Bicyclus anynana. Am Nat. 1998;152:853–60. doi: 10.1086/286213. pmid:18811432
[35]  Koch PB, Brakefield PM, Kesbeke F. Ecdysteroids control eyespot size and wing color pattern in the polyphenic butterfly Bicyclus anynana (Lepidoptera, Satyridae). J Insect Physiol. 1996;42:223–30. doi: 10.1016/0022-1910(95)00103-4
[36]  Kooi RE, Brakefield PM. The critical period for wing pattern induction in the polyphenic tropical butterfly Bicyclus anynana (Satyrinae). J Insect Physiol. 1999;45(3):201–12. pmid:12770367. doi: 10.1016/s0022-1910(98)00093-6
[37]  Oostra V, de Jong MA, Invergo BM, Kesbeke F, Wende F, Brakefield PM, et al. Translating environmental gradients into discontinuous reaction norms via hormone signalling in a polyphenic butterfly. Proceedings of the Royal Society B-Biological Sciences. 2011;278(1706):789–97. doi: 10.1098/rspb.2010.1560
[38]  Zijlstra WG, Steigenga MJ, Koch PB, Zwaan BJ, Brakefield PM. Butterfly selected lines explore the hormonal basis of interactions between life histories and morphology. Am Nat. 2004;163(5):E76–87. pmid:15122496 doi: 10.1086/383595
[39]  Mateus ARA, Marques-Pita M, Oostra V, Lafuente E, Brakefield PM, Zwaan BJ, et al. Adaptive developmental plasticity: Compartmentalized responses to environmental cues and to corresponding internal signals provide phenotypic flexibility. Bmc Biology. 2014;12. doi: 10.1186/s12915-014-0097-x
[40]  Monteiro A, Prudic KL. Multiple approaches to study color pattern evolution in butterflies. Trends in Evolutionary Biology. 2010;2:e2. doi: 10.4081/eb.2010.e2
[41]  Monteiro A, Chen B, Ramos DM, Oliver JC, Tong X, Guo M, et al. Distal-less regulates eyespot patterns and melanization in Bicyclus butterflies. J Exp Zool Part B. 2013;320(5):321–31. doi: 10.1002/jez.b.22503
[42]  Tomoyasu Y, Wheeler SR, Denell RE. Ultrabithorax is required for membranous wing identity in the beetle Tribolium castaneum. Nature. 2005;433(7026):643–7. pmid:15703749 doi: 10.1038/nature03272
[43]  Weatherbee SD, Halder G, Kim J, Hudson A, Carroll S. Ultrabithorax regulates genes at several levels of the wing-patterning hierarchy to shape the development of the Drosophila haltere. Gen Dev. 1998;12(10):1474–82. doi: 10.1101/gad.12.10.1474
[44]  Cherbas L, Lee K, Cherbas P. Identification of ecdysone response elements by analysis of the Drosophila Eip28/29 gene. Genes Dev. 1991;5(1):120–31. pmid:1899227 doi: 10.1101/gad.5.1.120
[45]  Zera AJ, Zhao ZW. Morph-associated JH titer diel rhythm in Gryllus firmus: Experimental verification of its circadian basis and cycle characterization in artificially selected lines raised in the field. J Insect Physiol. 2009;55(5):450–8. doi: 10.1016/j.jinsphys.2008.11.012. pmid:19100744
[46]  Davidowitz G, Nijhout HF. The physiological basis of reaction norms: The interaction among growth rate, the duration of growth and body size. Integrative and Comparative Biology. 2004;44(6):443–9. doi: 10.1093/icb/44.6.443. pmid:21676730
[47]  Westerlund SA, Hoffmann KH. Rapid quantification of juvenile hormones and their metabolites in insect haemolymph by liquid chromatography-mass spectrometry (LC-MS). Anal Bioanal Chem. 2004;379(3):540–3. pmid:15057500 doi: 10.1007/s00216-004-2598-x
[48]  Brunetti CR, Selegue JE, Monteiro A, French V, Brakefield PM, Carroll SB. The generation and diversification of butterfly eyespot color patterns. Curr Biol. 2001;11:1578–85. pmid:11676917 doi: 10.1016/s0960-9822(01)00502-4
[49]  Stoehr AM, Walker JF, Monteiro A. Spalt expression and the development of melanic color patterns in pierid butterflies. EvoDevo 2013;4:6 doi: 10.1186/2041-9139-4-6. pmid:23419038

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133