[1] | Will CL, Lührmann R Spliceosome structure and function. Cold Spring Harb Perspect Biol 2011;3: 1–23. doi: 10.1101/cshperspect.a003707
|
[2] | Wahl MC, Will CL, Lührmann R The spliceosome: design principles of a dynamic RNP machine. Cell 2009;136: 701–718. doi: 10.1016/j.cell.2009.02.009. pmid:19239890
|
[3] | Staley JP, Guthrie C Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 1998;92: 315–326. pmid:9476892 doi: 10.1016/s0092-8674(00)80925-3
|
[4] | Nilsen TW RNA-RNA interactions in the spliceosome: unraveling the ties that bind. Cell 1994;78: 1–4. pmid:7518355 doi: 10.1016/0092-8674(94)90563-0
|
[5] | Fabrizio P, Dannenberg J, Dube P, Kastner B, Stark H, et al. The evolutionarily conserved core design of the catalytic activation step of the yeast spliceosome. Mol Cell 2009;36: 593–608. doi: 10.1016/j.molcel.2009.09.040. pmid:19941820
|
[6] | Kim SH, Lin RJ Spliceosome activation by PRP2 ATPase prior to the first transesterification reaction of pre-mRNA splicing. Mol Cell Biol 1996;16: 6810–6819. pmid:8943336
|
[7] | Warkocki Z, Odenw?lder P, Schmitzová J, Platzmann F, Stark H, et al. Reconstitution of both steps of Saccharomyces cerevisiae splicing with purified spliceosomal components. Nat Struct Mol Biol 2009;16: 1237–1243. doi: 10.1038/nsmb.1729. pmid:19935684
|
[8] | Warkocki Z, Schneider C, Mozaffari-Jovin S, Schmitzová J, Hobartner C, et al. The G-patch protein Spp2 couples the spliceosome-stimulated ATPase activity of the DEAH-box protein Prp2 to catalytic activation of the spliceosome. Genes Dev 2015;29: 94–107. doi: 10.1101/gad.253070.114. pmid:25561498
|
[9] | Chiu YF, Liu YC, Chiang TW, Yeh TC, Tseng CK, et al. Cwc25 is a novel splicing factor required after Prp2 and Yju2 to facilitate the first catalytic reaction. Mol Cell Biol 2009;29: 5671–5678. doi: 10.1128/MCB.00773-09. pmid:19704000
|
[10] | Dziembowski A, Ventura AP, Rutz B, Caspary F, Faux C, et al. Proteomic analysis identifies a new complex required for nuclear pre-mRNA retention and splicing. EMBO J 2004;23: 4847–4856. pmid:15565172 doi: 10.1038/sj.emboj.7600482
|
[11] | Ohrt T, Prior M, Dannenberg J, Odenw?lder P, Dybkov O, et al. Prp2-mediated protein rearrangements at the catalytic core of the spliceosome as revealed by dcFCCS. RNA 2012;18: 1244–1256. doi: 10.1261/rna.033316.112. pmid:22535589
|
[12] | Lardelli RM, Thompson JX, Yates JR 3rd, Stevens SW Release of SF3 from the intron branchpoint activates the first step of pre-mRNA splicing. RNA 2010;16: 516–528. doi: 10.1261/rna.2030510. pmid:20089683
|
[13] | Query CC, Moore MJ, Sharp PA Branch nucleophile selection in pre-mRNA splicing: evidence for the bulged duplex model. Genes Dev 1994;8: 587–597. pmid:7926752 doi: 10.1101/gad.8.5.587
|
[14] | Gozani O, Potashkin J, Reed R A potential role for U2AF-SAP 155 interactions in recruiting U2 snRNP to the branch site. Mol Cell Biol 1998;18: 4752–4760. pmid:9671485
|
[15] | Gozani O, Feld R, Reed R Evidence that sequence-independent binding of highly conserved U2 snRNP proteins upstream of the branch site is required for assembly of spliceosomal complex A. Genes Dev 1996;10: 233–243. pmid:8566756 doi: 10.1101/gad.10.2.233
|
[16] | Hodges PE, Beggs JD RNA splicing. U2 fulfils a commitment. Curr Biol 1994;4: 264–267. pmid:7922333 doi: 10.1016/s0960-9822(00)00061-0
|
[17] | Kr?mer A The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu Rev Biochem 1996;65: 367–409. pmid:8811184 doi: 10.1146/annurev.bi.65.070196.002055
|
[18] | Wang Q, He J, Lynn B, Rymond BC Interactions of the yeast SF3b splicing factor. Mol Cell Biol 2005;25: 10745–10754. pmid:16314500 doi: 10.1128/mcb.25.24.10745-10754.2005
|
[19] | McPheeters DS, Muhlenkamp P Spatial organization of protein-RNA interactions in the branch site-3' splice site region during pre-mRNA splicing in yeast. Mol Cell Biol 2003;23: 4174–4186. pmid:12773561 doi: 10.1128/mcb.23.12.4174-4186.2003
|
[20] | Wysoczanski P, Schneider C, Xiang S, Munari F, Trowitzsch S, et al. Cooperative structure of the heterotrimeric pre-mRNA retention and splicing complex. Nat Struct Mol Biol 2014;21: 911–918. doi: 10.1038/nsmb.2889. pmid:25218446
|
[21] | Breaker RR, Joyce GF A DNA enzyme that cleaves RNA. Chem Biol 1994;1: 223–229. pmid:9383394 doi: 10.1016/1074-5521(94)90014-0
|
[22] | Moore MJ, Sharp PA Site-specific modification of pre-mRNA: the 2'-hydroxyl groups at the splice sites. Science 1992;256: 992–997. pmid:1589782 doi: 10.1126/science.1589782
|
[23] | Agafonov DE, Deckert J, Wolf E, Odenw?lder P, Bessonov S, et al. Semiquantitative Proteomic Analysis of the Human Spliceosome via a Novel Two-Dimensional Gel Electrophoresis Method. Mol Cell Biol 2011;31: 2667–2682. doi: 10.1128/MCB.05266-11. pmid:21536652
|
[24] | Fourmann JB, Schmitzová J, Christian H, Urlaub H, Ficner R, et al. Dissection of the factor requirements for spliceosome disassembly and the elucidation of its dissociation products using a purified splicing system. Genes Dev 2013;27: 413–428. doi: 10.1101/gad.207779.112. pmid:23431055
|
[25] | Silverman SK, Baum DA Use of deoxyribozymes in RNA research. Methods Enzymol 2009;469: 95–117. doi: 10.1016/S0076-6879(09)69005-4. pmid:20946786
|
[26] | Cameron V, Uhlenbeck OC 3'-Phosphatase activity in T4 polynucleotide kinase. Biochemistry 1977;16: 5120–5126. pmid:199248 doi: 10.1021/bi00642a027
|
[27] | van Roon AM, Loening NM, Obayashi E, Yang JC, Newman AJ, et al. Solution structure of the U2 snRNP protein Rds3p reveals a knotted zinc-finger motif. Proc Natl Acad Sci U S A 2008;105: 9621–9626. doi: 10.1073/pnas.0802494105. pmid:18621724
|
[28] | Teigelkamp S, Newman AJ, Beggs JD Extensive interactions of PRP8 protein with the 5' and 3' splice sites during splicing suggest a role in stabilization of exon alignment by U5 snRNA. EMBO J 1995;14: 2602–2612. pmid:7781612
|
[29] | Teigelkamp S, Whittaker E, Beggs JD Interaction of the yeast splicing factor PRP8 with substrate RNA during both steps of splicing. Nucleic Acids Res 1995;23: 320–326. pmid:7885825 doi: 10.1093/nar/23.3.320
|
[30] | Umen JG, Guthrie C A novel role for a U5 snRNP protein in 3' splice site selection. Genes Dev 1995;9: 855–868. pmid:7535718 doi: 10.1101/gad.9.7.855
|
[31] | Umen JG, Guthrie C Prp16p, Slu7p, and Prp8p interact with the 3' splice site in two distinct stages during the second catalytic step of pre-mRNA splicing. RNA 1995;1: 584–597. pmid:7489518
|
[32] | Chen HC, Tseng CK, Tsai RT, Chung CS, Cheng SC Link of NTR-mediated spliceosome disassembly with DEAH-box ATPases Prp2, Prp16, and Prp22. Mol Cell Biol 2013;33: 514–525. doi: 10.1128/MCB.01093-12. pmid:23166295
|
[33] | Albers M, Diment A, Muraru M, Russell CS, Beggs JD Identification and characterization of Prp45p and Prp46p, essential pre-mRNA splicing factors. RNA 2003;9: 138–150. pmid:12554883 doi: 10.1261/rna.2119903
|
[34] | Staknis D, Reed R Direct interactions between pre-mRNA and six U2 small nuclear ribonucleoproteins during spliceosome assembly. Mol Cell Biol 1994;14: 2994–3005. pmid:8164655
|
[35] | Gozani O, Patton JG, Reed R A novel set of spliceosome-associated proteins and the essential splicing factor PSF bind stably to pre-mRNA prior to catalytic step II of the splicing reaction. EMBO J 1994;13: 3356–3367. pmid:8045264
|
[36] | Zhou Y, Chen C, Johansson MJ The pre-mRNA retention and splicing complex controls tRNA maturation by promoting TAN1 expression. Nucleic Acids Res 2013;41: 5669–5678. doi: 10.1093/nar/gkt269. pmid:23605039
|
[37] | Tripsianes K, Friberg A, Barrandon C, Brooks M, van Tilbeurgh H, et al. A novel protein-protein interaction in the RES (REtention and Splicing) complex. J Biol Chem 2014;289: 28640–28650. doi: 10.1074/jbc.M114.592311. pmid:25160624
|
[38] | Trowitzsch S, Weber G, Luhrmann R, Wahl MC Crystal structure of the Pml1p subunit of the yeast precursor mRNA retention and splicing complex. J Mol Biol 2009;385: 531–541. doi: 10.1016/j.jmb.2008.10.087. pmid:19010333
|
[39] | Trowitzsch S, Weber G, Luhrmann R, Wahl MC An unusual RNA recognition motif acts as a scaffold for multiple proteins in the pre-mRNA retention and splicing complex. J Biol Chem 2008;283: 32317–32327. doi: 10.1074/jbc.M804977200. pmid:18809678
|
[40] | Brooks MA, Dziembowski A, Quevillon-Cheruel S, Henriot V, Faux C, et al. Structure of the yeast Pml1 splicing factor and its integration into the RES complex. Nucleic Acids Res 2009;37: 129–143. doi: 10.1093/nar/gkn894. pmid:19033360
|
[41] | Gottschalk A, Bartels C, Neubauer G, Lührmann R, Fabrizio P A Novel Yeast U2 snRNP Protein, Snu17p, Is Required for the First Catalytic Step of Splicing and for Progression of Spliceosome Assembly. Mol Cell Biol 2001;21: 3037–3046. pmid:11287609 doi: 10.1128/mcb.21.9.3037-3046.2001
|
[42] | Liu HL, Cheng SC The interaction of Prp2 with a defined region of the intron is required for the first splicing reaction. Mol Cell Biol 2012;32: 5056–5066. doi: 10.1128/MCB.01109-12. pmid:23071087
|
[43] | Wlodaver AM, Staley JP The DExD/H-box ATPase Prp2p destabilizes and proofreads the catalytic RNA core of the spliceosome. RNA 2014;20: 282–294. doi: 10.1261/rna.042598.113. pmid:24442613
|
[44] | Grainger RJ, Beggs JD Prp8 protein: at the heart of the spliceosome. RNA 2005;11: 533–557. pmid:15840809 doi: 10.1261/rna.2220705
|
[45] | Umen JG, Guthrie C The second catalytic step of pre-mRNA splicing. RNA 1995;1: 869–885. pmid:8548652
|
[46] | Coelho Ribeiro Mde L, Espinosa J, Islam S, Martinez O, Thanki JJ, et al. Malleable ribonucleoprotein machine: protein intrinsic disorder in the Saccharomyces cerevisiae spliceosome. PeerJ 2013;1: e2. doi: 10.7717/peerj.2. pmid:23638354
|
[47] | Gahura O, Abrhamova K, Skruzny M, Valentova A, Munzarova V, et al. Prp45 affects Prp22 partition in spliceosomal complexes and splicing efficiency of non-consensus substrates. J Cell Biochem 2009;106: 139–151. doi: 10.1002/jcb.21989. pmid:19016306
|
[48] | McPheeters DS, Schwer B, Muhlenkamp P Interaction of the yeast DExH-box RNA helicase prp22p with the 3' splice site during the second step of nuclear pre-mRNA splicing. Nucleic Acids Res 2000;28: 1313–1321. pmid:10684925 doi: 10.1093/nar/28.6.1313
|