全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2015 

Recurrent Domestication by Lepidoptera of Genes from Their Parasites Mediated by Bracoviruses

DOI: 10.1371/journal.pgen.1005470

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bracoviruses are symbiotic viruses associated with tens of thousands of species of parasitic wasps that develop within the body of lepidopteran hosts and that collectively parasitize caterpillars of virtually every lepidopteran species. Viral particles are produced in the wasp ovaries and injected into host larvae with the wasp eggs. Once in the host body, the viral DNA circles enclosed in the particles integrate into lepidopteran host cell DNA. Here we show that bracovirus DNA sequences have been inserted repeatedly into lepidopteran genomes, indicating this viral DNA can also enter germline cells. The original mode of Horizontal Gene Transfer (HGT) unveiled here is based on the integrative properties of an endogenous virus that has evolved as a gene transfer agent within parasitic wasp genomes for ≈100 million years. Among the bracovirus genes thus transferred, a phylogenetic analysis indicated that those encoding C-type-lectins most likely originated from the wasp gene set, showing that a bracovirus-mediated gene flux exists between the 2 insect orders Hymenoptera and Lepidoptera. Furthermore, the acquisition of bracovirus sequences that can be expressed by Lepidoptera has resulted in the domestication of several genes that could result in adaptive advantages for the host. Indeed, functional analyses suggest that two of the acquired genes could have a protective role against a common pathogen in the field, baculovirus. From these results, we hypothesize that bracovirus-mediated HGT has played an important role in the evolutionary arms race between Lepidoptera and their pathogens.

References

[1]  Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature. (2000);405:299–304. pmid:10830951 doi: 10.1038/35012500
[2]  Keeling PJ, Palmer JD. Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet. (2008);9:605–18. doi: 10.1038/nrg2386. pmid:18591983
[3]  Syvanen M. Evolutionary implications of horizontal gene transfer. Annu Rev Genet. (2012);46:341–58. doi: 10.1146/annurev-genet-110711-155529. pmid:22934638
[4]  Boto L. Horizontal gene transfer in the acquisition of novel traits by metazoans. Proc Biol Sci. (2014);281:20132450. doi: 10.1098/rspb.2013.2450. pmid:24403327
[5]  Crisp A, Boschetti C, Perry M, Tunnacliffe A, Micklem G. Expression of multiple horizontally acquired genes is a hallmark of both vertebrate and invertebrate genomes. Genome Biol. (2015);16:50. doi: 10.1186/s13059-015-0607-3. pmid:25785303
[6]  Gilbert C, Chateigner A, Ernenwein L, Barbe V, Bézier A, Herniou EA, et al. Population genomics supports baculoviruses as vectors of horizontal transfer of insect transposons. Nat Commun. (2014);5:3348. doi: 10.1038/ncomms4348. pmid:24556639
[7]  Kondo N, Nikoh N, Ijichi N, Shimada M, Fukatsu T. Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insect. Proc Natl Acad Sci U S A. (2002);99:14280–5. pmid:12386340 doi: 10.1073/pnas.222228199
[8]  Dunning Hotopp JC, Clark ME, Oliveira DC, Foster JM, Fischer P, Munoz Torres MC, et al. Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science. (2007);317:1753–6. pmid:17761848 doi: 10.1126/science.1142490
[9]  Serbus LR, Sullivan W. A cellular basis for Wolbachia recruitment to the host germline. PLoS Pathog. (2007);3:e190. pmid:18085821 doi: 10.1371/journal.ppat.0030190
[10]  Sun BF, Xiao JH, He SM, Liu L, Murphy RW, Huang DW. Multiple ancient horizontal gene transfers and duplications in lepidopteran species. Insect Mol Biol. (2013);22:72–87. doi: 10.1111/imb.12004. pmid:23211014
[11]  Murphy N, Banks JC, Whitfield JB, Austin AD. Phylogeny of the parasitic microgastroid subfamilies (Hymenoptera: Braconidae) based on sequence data from seven genes, with an improved time estimate of the origin of the lineage. Mol Phylogenet Evol. (2008);47:378–95. doi: 10.1016/j.ympev.2008.01.022. pmid:18325792
[12]  Bézier A, Annaheim M, Herbinière J, Wetterwald C, Gyapay G, Bernard-Samain S, et al. Polydnaviruses of braconid wasps derive from an ancestral nudivirus. Science. (2009);323:926–30. doi: 10.1126/science.1166788. pmid:19213916
[13]  Herniou EA, Huguet E, Thézé J, Bézier A, Periquet G, Drezen J-M. When parasitc wasps hijacked viruses: genomic and functionnal evolution of polydnaviruses. Phil Transac R Soc B. (2013);368:1–13. doi: 10.1098/rstb.2013.0051
[14]  Strand MR, Burke GR. Polydnavirus-wasp associations: evolution, genome organization, and function. Curr Opin Virol. (2013);3:587–94. doi: 10.1016/j.coviro.2013.06.004. pmid:23816391
[15]  Gundersden-Rindal D, Dupuy C, Huguet E, Drezen J-M. Parasitoid Polydnaviruses: Evolution, Pathology and Applications. Biocontrol Science and Technology (2013);23:1–61. doi: 10.1080/09583157.2012.731497
[16]  Strand MR. Polydnavirus gene products that interact with the host immune system. In: Beckage NE, Drezen J-M, editors. Parasitoid viruses symbionts and pathogens. San Diego: Elsevier; 2012. p. 149–61.
[17]  Beckage NE. Polydnaviruses as endocrine regulators. In: Beckage NE, Drezen J-M, editors. Parasitoid viruses symbionts and pathogens. San Diego: Elsevier; 2012. p. 163–8.
[18]  Bézier A, Louis F, Jancek S, Periquet G, Thézé J, Gyapay G, et al. Functional endogenous viral elements in the genome of the parasitoid wasp Cotesia congregata: insights into the evolutionary dynamics of bracoviruses. Philos Trans R Soc Lond B Biol Sci. (2013);368:20130047. doi: 10.1098/rstb.2013.0047. pmid:23938757
[19]  Louis F, Bézier A, Periquet G, Ferras C, Drezen JM, Dupuy C. The bracovirus genome of the parasitoid wasp Cotesia congregata is amplified within 13 replication units, including sequences not packaged in the particles. J Virol. (2013);87:9649–60. doi: 10.1128/JVI.00886-13. pmid:23804644
[20]  Burke GR, Walden KK, Whitfield JB, Robertson HM, Strand MR. Widespread genome reorganization of an obligate virus mutualist. PLoS Genet. (2014);10:e1004660. doi: 10.1371/journal.pgen.1004660. pmid:25232843
[21]  Desjardins CA, Gundersen-Rindal DE, Hostetler JB, Tallon LJ, Fuester RW, Schatz MC, et al. Structure and evolution of a proviral locus of Glyptapanteles indiensis bracovirus. BMC Microbiol. (2007);7:61. pmid:17594494 doi: 10.1186/1471-2180-7-61
[22]  Chevignon G, Thézé J, Cambier S, Poulain J, Da Silva C, Bézier A, et al. Functional annotation of Cotesia congregata bracovirus: identification of the viral genes expressed in parasitized host immune tissues. J Virol. (2014);88:8795–812. doi: 10.1128/JVI.00209-14. pmid:24872581
[23]  Desjardins CA, Gundersen-Rindal DE, Hostetler JB, Tallon LJ, Fadrosh DW, Fuester RW, et al. Comparative genomics of mutualistic viruses of Glyptapanteles parasitic wasps. Genome Biol. (2008);9:R183. doi: 10.1186/gb-2008-9-12-r183. pmid:19116010
[24]  Bézier A, Herbinière J, Serbielle C, Lesobre J, Wincker P, Huguet E, et al. Bracovirus gene products are highly divergent from insect proteins. Arch Insect Biochem Physiol. (2008);67:172–87. doi: 10.1002/arch.20219. pmid:18348209
[25]  Serbielle C, Chowdhury S, Pichon S, Dupas S, Lesobre J, Purisima EO, et al. Viral cystatin evolution and three-dimensional structure modelling: a case of directional selection acting on a viral protein involved in a host-parasitoid interaction. BMC Biol. (2008);6:38. doi: 10.1186/1741-7007-6-38. pmid:18783611
[26]  Serbielle C, Dupas S, Perdereau E, Héricourt F, Dupuy C, Huguet E, et al. Evolutionary mechanisms driving the evolution of a large polydnavirus gene family coding for protein tyrosine phosphatases. BMC Evol Biol. (2012);12:253. doi: 10.1186/1471-2148-12-253. pmid:23270369
[27]  Beck MH, Zhang S, Bitra K, Burke GR, Strand MR. The encapsidated genome of Microplitis demolitor bracovirus integrates into the host Pseudoplusia includens. J Virol. (2011);85:11685–96. doi: 10.1128/JVI.05726-11. pmid:21880747
[28]  Dushay MS, Beckage NE. Dose-dependent separation of Cotesia congregata associated polydnavirus effects on Manduca sexta larval development and immunity. J Insect Physiol. (1993);39:1029–40. doi: 10.1016/0022-1910(93)90127-d
[29]  Quicke DLJ. Parasitic wasps. London: Chapman & Hall; 1997.
[30]  Beckage NE, Tan FF. Development of the braconid wasp Cotesia congregata in a semi-permissive noctuid host, Trichoplusia ni. Journal of Invertebrate Pathology. (2002);81:49–52. pmid:12417213 doi: 10.1016/s0022-2011(02)00112-x
[31]  Schneider SE, Thomas JH. Accidental genetic engineers: horizontal sequence transfer from parasitoid wasps to their lepidopteran hosts. PLoS One. (2014);9:e109446. doi: 10.1371/journal.pone.0109446. pmid:25296163
[32]  Zhan S, Merlin C, Boore JL, Reppert SM. The monarch butterfly genome yields insights into long-distance migration. Cell. (2011);147:1171–85. doi: 10.1016/j.cell.2011.09.052. pmid:22118469
[33]  Chevignon G, Cambier S, Da Silva C, Poulain J, Drezen JM, Huguet E, et al. Transcriptomic response of Manduca sexta immune tissues to parasitization by the bracovirus associated wasp Cotesia congregata. Insect Biochem Mol Biol. (2015). doi: 10.1016/j.ibmb.2014.12.008
[34]  Smith DAS, Lushai G, Allen JA. A classification of Danaus butterflies (Lepidoptera: Nymphalidae) based upon data from morphology and DNA. Zool J Linn Soc. (2005);144:191–212. doi: 10.1111/j.1096-3642.2005.00169.x
[35]  Lushai G, Smith DAS, Goulson D, Allen JA. Mitochondrial DNA clocks and the phylogeny of Danaus butterflies. Insect Sci Applic. (2003);23:309–15. doi: 10.1017/s1742758400012376
[36]  Brower AVZ, Wahlberg N, Ogawa JR, Boppré M, Vane-Wright RI. Phylogenetic relationships among genera of danaine butterflies (Lepidoptera: Nymphalidae) as implied by morphology and DNA sequences. Systematics and Biodiversity. (2010);8:75–89. doi: 10.1080/14772001003626814
[37]  Abhiman S, Iyer LM, Aravind L. BEN: a novel domain in chromatin factors and DNA viral proteins. Bioinformatics. (2008);24:458–61. doi: 10.1093/bioinformatics/btn007. pmid:18203771
[38]  Park B, Kim Y. Transient transcription of a putative RNase containing BEN domain encoded in Cotesia plutellae bracovirus induces an immunosuppression of the diamondback moth, Plutella xylostella. J Invertebr Pathol. (2010);105:156–63. doi: 10.1016/j.jip.2010.06.003. pmid:20600089
[39]  Dai Q, Ren A, Westholm JO, Serganov AA, Patel DJ, Lai EC. The BEN domain is a novel sequence-specific DNA-binding domain conserved in neural transcriptional repressors. Genes Dev. (2013);27:602–14. doi: 10.1101/gad.213314.113. pmid:23468431
[40]  Pascual L, Jakubowska AK, Blanca JM, Canizares J, Ferre J, Gloeckner G, et al. The transcriptome of Spodoptera exigua larvae exposed to different types of microbes. Insect Biochem Mol Biol. (2012);42:557–70. doi: 10.1016/j.ibmb.2012.04.003. pmid:22564783
[41]  Kergoat GJ, Prowell DP, Le Ru BP, Mitchell A, Dumas P, Clamens AL, et al. Disentangling dispersal, vicariance and adaptive radiation patterns: a case study using armyworms in the pest genus Spodoptera (Lepidoptera: Noctuidae). Mol Phylogenet Evol. (2012);65:855–70. doi: 10.1016/j.ympev.2012.08.006. pmid:22939903
[42]  Ohkawa T, Volkman LE, Welch MD. Actin-based motility drives baculovirus transit to the nucleus and cell surface. J Cell Biol. (2010);190:187–95. doi: 10.1083/jcb.201001162. pmid:20660627
[43]  Volkman LE. Baculovirus infectivity and the actin cytoskeleton. Curr Drug Targets. (2007);8:1075–83. pmid:17979667 doi: 10.2174/138945007782151379
[44]  Glatz R, Schmidt O, Asgari S. Characterization of a novel protein with homology to C-type lectins expressed by the Cotesia rubecula bracovirus in larvae of the lepidopteran host, Pieris rapae. J Biol Chem. (2003):M301396200. doi: 10.1074/jbc.m301396200
[45]  Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol. (2004);340:783–95. pmid:15223320 doi: 10.1016/j.jmb.2004.05.028
[46]  Yoshiyama M, Tu Z, Kainoh Y, Honda H, Shono T, Kimura K. Possible horizontal transfer of a transposable element from host to parasitoid. Mol Biol Evol. (2001);18:1952–8. pmid:11557800 doi: 10.1093/oxfordjournals.molbev.a003735
[47]  Guo X, Gao J, Li F, Wang J. Evidence of horizontal transfer of non-autonomous Lep1 Helitrons facilitated by host-parasite interactions. Sci Rep. (2014);4:5119. doi: 10.1038/srep05119. pmid:24874102
[48]  Thomas J, Schaack S, Pritham EJ. Pervasive horizontal transfer of rolling-circle transposons among animals. Genome Biol Evol. (2010);2:656–64. doi: 10.1093/gbe/evq050. pmid:20693155
[49]  Pasquier-Barre F, Dupuy C, Huguet E, Monteiro F, Moreau A, Poirie M, et al. Polydnavirus replication: the EP1 segment of the parasitoid wasp Cotesia congregata is amplified within a larger precursor molecule. J Gen Virol. (2002);83:2035–45. pmid:12124468 doi: 10.1099/0022-1317-83-8-2035
[50]  Burke GR, Thomas SA, Eum JH, Strand MR. Mutualistic polydnaviruses share essential replication gene functions with pathogenic ancestors. PLoS Pathog. (2013);9:e1003348. doi: 10.1371/journal.ppat.1003348. pmid:23671417
[51]  Wyder S, Blank F, Lanzrein B. Fate of polydnavirus DNA of the egg-larval parasitoid Chelonus inanitus in the host Spodoptera littoralis. J Insect Physiol. (2003);49:491–500. pmid:12770628 doi: 10.1016/s0022-1910(03)00056-8
[52]  Beck MH, Inman RB, Strand MR. Microplitis demolitor bracovirus genome segments vary in abundance and are individually packaged in virions. Virology. (2007);359:179–89. pmid:17034828 doi: 10.1016/j.virol.2006.09.002
[53]  Burke GR, Strand MR. Deep sequencing identifies viral and wasp genes with potential roles in replication of Microplitis demolitor Bracovirus. J Virol. (2012);86:3293–306. doi: 10.1128/JVI.06434-11. pmid:22238295
[54]  Wurtele H, Little KC, Chartrand P. Illegitimate DNA integration in mammalian cells. Gene Ther. (2003);10:1791–9. pmid:12960968 doi: 10.1038/sj.gt.3302074
[55]  Takasu K, Hoang Le K. The larval parasitoid Microplitis croceipes oviposits in conspecific adults. Naturwissenschaften. (2007);94:200–6. pmid:17124591 doi: 10.1007/s00114-006-0181-3
[56]  Virto C, Navarro D, Tellez MM, Herrero S, Williams T, Murillo R, et al. Natural populations of Spodoptera exigua are infected by multiple viruses that are transmitted to their offspring. J Invertebr Pathol. (2014);122:22–7. doi: 10.1016/j.jip.2014.07.007. pmid:25128697
[57]  Cabodevilla O, Villar E, Virto C, Murillo R, Williams T, Caballero P. Intra- and intergenerational persistence of an insect nucleopolyhedrovirus: adverse effects of sublethal disease on host development, reproduction, and susceptibility to superinfection. Appl Environ Microbiol. (2011);77:2954–60. doi: 10.1128/AEM.02762-10. pmid:21398487
[58]  Wilson JW. Notes on the biology of Laphrygma exigua Hübner. Florida Entomol. (1932);16:33–9. doi: 10.2307/3492536
[59]  Weis WI, Taylor ME, Drickamer K. The C-type lectin superfamily in the immune system. Immunol Rev. (1998);163:19–34. pmid:9700499 doi: 10.1111/j.1600-065x.1998.tb01185.x
[60]  Lee S, Nalini M, Kim Y. A viral lectin encoded in Cotesia plutellae bracovirus and its immunosuppressive effect on host hemocytes. Comp Biochem Physiol A Mol Integr Physiol. (2008);149:351–61. doi: 10.1016/j.cbpa.2008.01.007. pmid:18325805
[61]  Liu F, Ling E, Wu S. Gene expression profiling during early response to injury and microbial challenges in the silkworm, Bombyx mori. Arch Insect Biochem Physiol. (2009);72:16–33. doi: 10.1002/arch.20320. pmid:19557735
[62]  Pan D, He N, Yang Z, Liu H, Xu X. Differential gene expression profile in hepatopancreas of WSSV-resistant shrimp (Penaeus japonicus) by suppression subtractive hybridization. Dev Comp Immunol. (2005);29:103–12. pmid:15450750 doi: 10.1016/j.dci.2004.07.001
[63]  Chai LQ, Tian YY, Yang DT, Wang JX, Zhao XF. Molecular cloning and characterization of a C-type lectin from the cotton bollworm, Helicoverpa armigera. Dev Comp Immunol. (2008);32:71–83. pmid:17568670 doi: 10.1016/j.dci.2007.04.006
[64]  Smits PH, Vlak JM. Biological activity of Spodoptera exigua nuclear polyhedrosis virus against S. exigua larvae. J invertebrate Pathol. (1988);51:107–14. doi: 10.1016/0022-2011(88)90066-3
[65]  Cory JS, Myers JH. Within and between population variation in disease resistance in cyclic populations of western tent caterpillars: a test of the disease defence hypothesis. J Anim Ecol. (2009);78:646–55. doi: 10.1111/j.1365-2656.2008.01519.x. pmid:19220564
[66]  Jakubowska AK, Vogel H, Herrero S. Increase in gut microbiota after immune suppression in baculovirus-infected larvae. PLoS Pathog. (2013);9:e1003379. doi: 10.1371/journal.ppat.1003379. pmid:23717206
[67]  Kozak CA. The mouse "xenotropic" gammaretroviruses and their XPR1 receptor. Retrovirology. (2010);7:101. doi: 10.1186/1742-4690-7-101. pmid:21118532
[68]  Taylor GM, Gao Y, Sanders DA. Fv-4: identification of the defect in Env and the mechanism of resistance to ecotropic murine leukemia virus. J Virol. (2001);75:11244–8. pmid:11602766 doi: 10.1128/jvi.75.22.11244-11248.2001
[69]  Fujino K, Horie M, Honda T, Merriman DK, Tomonaga K. Inhibition of Borna disease virus replication by an endogenous bornavirus-like element in the ground squirrel genome. Proc Natl Acad Sci U S A. (2014);111:13175–80. doi: 10.1073/pnas.1407046111. pmid:25157155
[70]  Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, et al. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science. (1986);232:738–43. pmid:3457472 doi: 10.1126/science.3457472
[71]  Gottula J, Fuchs M. Toward a quarter century of pathogen-derived resistance and practical approaches to plant virus disease control. Adv Virus Res. (2009);75:161–83. doi: 10.1016/S0065-3527(09)07505-8. pmid:20109666
[72]  Malfavon-Borja R, Feschotte C. Fighting fire with fire: Endogenous retrovirus envelopes as restriction factors. J Virol. (2015);89:4047–50. doi: 10.1128/JVI.03653-14. pmid:25653437
[73]  Yan Y, Buckler-White A, Wollenberg K, Kozak CA. Origin, antiviral function and evidence for positive selection of the gammaretrovirus restriction gene Fv1 in the genus Mus. Proc Natl Acad Sci U S A. (2009);106:3259–63. doi: 10.1073/pnas.0900181106. pmid:19221034
[74]  Bertsch C, Beuve M, Dolja VV, Wirth M, Pelsy F, Herrbach E, et al. Retention of the virus-derived sequences in the nuclear genome of grapevine as a potential pathway to virus resistance. Biol Direct. (2009);4:21. doi: 10.1186/1745-6150-4-21. pmid:19558678
[75]  Flegel TW. Hypothesis for heritable, anti-viral immunity in crustaceans and insects. Biol Direct. (2009);4:32. doi: 10.1186/1745-6150-4-32. pmid:19725947
[76]  Cai Y, Fan J, Sun S, Wang F, Yang K, Li G, et al. Interspecific interaction between Spodoptera exigua multiple nucleopolyhedrovirus and Microplitis bicoloratus (Hymenoptera: Braconidae: Microgastrina) in Spodoptera exigua (Lepidoptera: Noctuidae) larvae. J Econ Entomol. (2012);105:1503–8. pmid:23156143 doi: 10.1603/ec12077
[77]  Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J. DNAPlotter: circular and linear interactive genome visualization. Bioinformatics. (2009);25:119–20. doi: 10.1093/bioinformatics/btn578. pmid:18990721
[78]  Mason WRM. The polyphyletic nature of Apanteles Foerster (Hymenoptera: Braconidae): a phylogeny and reclassification of Microgastrinae. Memoirs of the Entomological Society of Canada ed: Memoirs of the Entomological Society of Canada; 1981. 147 p.
[79]  Hernandez-Martinez P, Ferre J, Escriche B. Susceptibility of Spodoptera exigua to 9 toxins from Bacillus thuringiensis. J Invertebr Pathol. (2008);97:245–50. pmid:18082763 doi: 10.1016/j.jip.2007.11.001
[80]  Hernandez-Martinez P, Naseri B, Navarro-Cerrillo G, Escriche B, Ferre J, Herrero S. Increase in midgut microbiota load induces an apparent immune priming and increases tolerance to Bacillus thuringiensis. Environ Microbiol. (2010);12:2730–7. doi: 10.1111/j.1462-2920.2010.02241.x. pmid:20482744
[81]  Hernandez-Martinez P, Navarro-Cerrillo G, Caccia S, de Maagd RA, Moar WJ, Ferre J, et al. Constitutive activation of the midgut response to Bacillus thuringiensis in Bt-resistant Spodoptera exigua. PLoS One. (2010);5. doi: 10.1371/journal.pone.0012795
[82]  Park Y, Gonzalez-Martinez RM, Navarro-Cerrillo G, Chakroun M, Kim Y, Ziarsolo P, et al. ABCC transporters mediate insect resistance to multiple Bt toxins revealed by bulk segregant analysis. BMC Biol. (2014);12:46. doi: 10.1186/1741-7007-12-46. pmid:24912445
[83]  Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. (2012);9:357–9. doi: 10.1038/nmeth.1923. pmid:22388286
[84]  Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. (2009);25:2078–9. doi: 10.1093/bioinformatics/btp352. pmid:19505943
[85]  Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. (2008);18:821–9. doi: 10.1101/gr.074492.107. pmid:18349386
[86]  Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. (2002);30:3059–66. 8. pmid:12136088 doi: 10.1093/nar/gkf436
[87]  Pond SL, Frost SD, Muse SV. HyPhy: hypothesis testing using phylogenies. Bioinformatics. (2005);21:676–9. pmid:15509596 doi: 10.1093/bioinformatics/bti079
[88]  Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. (2007);24:1586–91. pmid:17483113 doi: 10.1093/molbev/msm088
[89]  Hernandez-Rodriguez CS, Ferre J, Herrero S. Genomic structure and promoter analysis of pathogen-induced repat genes from Spodoptera exigua. Insect Mol Biol. (2009);18:77–85. doi: 10.1111/j.1365-2583.2008.00850.x. pmid:19076251
[90]  Kaba SA, Salcedo AM, Wafula PO, Vlak JM, van Oers MM. Development of a chitinase and v-cathepsin negative bacmid for improved integrity of secreted recombinant proteins. J Virol Methods. (2004);122:113–8. pmid:15488628 doi: 10.1016/j.jviromet.2004.07.006
[91]  Luckow VA, Lee SC, Barry GF, Olins PO. Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol. (1993);67:4566–79. pmid:8392598
[92]  WF IJ, van Strien EA, Heldens JG, Broer R, Zuidema D, Goldbach RW, et al. Sequence and organization of the Spodoptera exigua multicapsid nucleopolyhedrovirus genome. J Gen Virol. (1999);80:3289–304. pmid:10567663 doi: 10.1099/0022-1317-80-12-3289
[93]  Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. (1997);25:4876–82. 1. pmid:9396791 doi: 10.1093/nar/25.24.4876
[94]  Nicholas KB, Nicholas HBJ, Deerfield DW. GeneDoc: analysis and visualization of genetic variation. EMBNEWNEWS. (1997);4:14.
[95]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. (2011);28:2731–9. doi: 10.1093/molbev/msr121. pmid:21546353

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133