[1] | Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334: 1081–1086. doi: 10.1126/science.1209038. pmid:22116877
|
[2] | Lindholm D, Wootz H, Korhonen L. ER stress and neurodegenerative diseases. Cell Death Differ. 2006;13: 385–392. pmid:16397584 doi: 10.1038/sj.cdd.4401778
|
[3] | Mori K. Signalling pathways in the unfolded protein response: development from yeast to mammals. J Biochem. 2009;146: 743–750. doi: 10.1093/jb/mvp166. pmid:19861400
|
[4] | Parsons AB, Brost RL, Ding H, Li Z, Zhang C, Sheikh B, et al. Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol. 2004;22: 62–69. pmid:14661025 doi: 10.1038/nbt919
|
[5] | Hedbacker K, Carlson M. SNF1/AMPK pathways in yeast. Front Biosci. 2008;13: 2408–2420. pmid:17981722 doi: 10.2741/2854
|
[6] | Broach JR. Nutritional control of growth and development in yeast. Genetics. 2012;192: 73–105. doi: 10.1534/genetics.111.135731. pmid:22964838
|
[7] | Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13: 251–262. doi: 10.1038/nrm3311. pmid:22436748
|
[8] | Estruch F, Treitel MA, Yang X, Carlson M. N-terminal mutations modulate yeast SNF1 protein kinase function. Genetics. 1992;132: 639–650. pmid:1468623
|
[9] | McCartney RR, Schmidt MC. Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J Biol Chem. 2001;276: 36460–36406. pmid:11486005 doi: 10.1074/jbc.m104418200
|
[10] | Nath N, McCartney RR, Schmidt MC. Yeast Pak1 kinase associates with and activates Snf1. Mol Cell Biol. 2003;23: 3909–3917. pmid:12748292 doi: 10.1128/mcb.23.11.3909-3917.2003
|
[11] | Hong SP, Leiper FC, Woods A, Carling D, Carlson M. Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci U S A. 2003;100: 8839–8843. pmid:12847291 doi: 10.1073/pnas.1533136100
|
[12] | Sutherland CM, Hawley SA, McCartney RR, Leech A, Stark MJ, Schmidt MC, et al. Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex. Curr Biol. 2003;13: 1299–1305. pmid:12906789 doi: 10.1016/s0960-9822(03)00459-7
|
[13] | Tu J, Carlson M. REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae. EMBO J. 1995;14: 5939–5946. pmid:8846786
|
[14] | Sanz P, Alms GR, Haystead TA, Carlson M. Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase. Mol Cell Biol. 2000;20: 1321–1328. pmid:10648618 doi: 10.1128/mcb.20.4.1321-1328.2000
|
[15] | Hong SP, Carlson M. Regulation of Snf1 protein kinase in response to environmental stress. J Biol Chem. 2007;282: 16838–16845. pmid:17438333 doi: 10.1074/jbc.m700146200
|
[16] | Saito H, Posas F. Response to hyperosmotic stress. Genetics. 2012;192: 289–318. doi: 10.1534/genetics.112.140863. pmid:23028184
|
[17] | Brewster JL, Gustin MC. Hog1: 20 years of discovery and impact. Sci Signal. 2014;7: re7. doi: 10.1126/scisignal.2005458. pmid:25227612
|
[18] | Bicknell AA, Tourtellotte J, Niwa M. Late phase of the endoplasmic reticulum stress response pathway is regulated by Hog1 MAP kinase. J Biol Chem. 2010;285: 17545–17555. doi: 10.1074/jbc.M109.084681. pmid:20382742
|
[19] | Torres-Quiroz F, García-Marqués S, Coria R, Randez-Gil F, Prieto JA. The activity of yeast Hog1 MAPK is required during endoplasmic reticulum stress induced by tunicamycin exposure. J Biol Chem. 2010;285: 20088–20096. doi: 10.1074/jbc.M109.063578. pmid:20430884
|
[20] | Feng ZH, Wilson SE, Peng ZY, Schlender KK, Reimann EM, Trumbly RJ. The yeast GLC7 gene required for glycogen accumulation encodes a type 1 protein phosphatase. J Biol Chem. 1991;266: 23796–23801. pmid:1660885
|
[21] | Cannon JF, Pringle JR, Fiechter A, Khalil M. Characterization of glycogen-deficient glc mutants of Saccharomyces cerevisiae. Genetics. 1994;136: 485–503. pmid:8150278
|
[22] | Tatebayashi K, Takekawa M, Saito H. A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway. EMBO J. 2003;22: 3624–3634. pmid:12853477 doi: 10.1093/emboj/cdg353
|
[23] | Kyriakis JM, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev. 2012;92: 689–737. doi: 10.1152/physrev.00028.2011. pmid:22535895
|
[24] | Wurgler-Murphy SM, Maeda T, Witten EA, Saito H. Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases. Mol Cell Biol. 1997;17: 1289–1297. pmid:9032256
|
[25] | Jacoby T, Flanagan H, Faykin A, Seto AG, Mattison C, Ota I. Two protein-tyrosine phosphatases inactivate the osmotic stress response pathway in yeast by targeting the mitogen-activated protein kinase, Hog1. J Biol Chem. 1997;272: 17749–17755. pmid:9211927 doi: 10.1074/jbc.272.28.17749
|
[26] | Maeda T, Wurgler-Murphy SM, Saito H. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature. 1994;369: 242–245. pmid:8183345 doi: 10.1038/369242a0
|
[27] | Maeda T, Takekawa M, Saito H. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science. 1995;269: 554–558. pmid:7624781 doi: 10.1126/science.7624781
|
[28] | Ferrer-Dalmau J, Randez-Gil F, Marquina M, Prieto JA, Casamayor A. Protein kinase Snf1 is involved in the proper regulation of the unfolded protein response in Saccharomyces cerevisiae. Biochem J. 2015;468: 33–47. doi: 10.1042/BJ20140734. pmid:25730376
|
[29] | Mattison CP, Spencer SS, Kresge KA, Lee J, Ota IM. Differential regulation of the cell wall integrity mitogen-activated protein kinase pathway in budding yeast by the protein tyrosine phosphatases Ptp2 and Ptp3. Mol Cell Biol. 1999;19: 7651–760. pmid:10523653
|
[30] | Chawla A, Chakrabarti S, Ghosh G, Niwa M. Attenuation of yeast UPR is essential for survival and is mediated by IRE1 kinase. J Cell Biol. 2011;193: 41–50. doi: 10.1083/jcb.201008071. pmid:21444691
|
[31] | Rubio C, Pincus D, Korennykh A, Schuck S, El-Samad H, Walter P. Homeostatic adaptation to endoplasmic reticulum stress depends on Ire1 kinase activity. J Cell Biol. 2011;193: 171–184. doi: 10.1083/jcb.201007077. pmid:21444684
|
[32] | Mizuno T, Hisamoto N, Terada T, Kondo T, Adachi M, Nishida E, et al. The Caenorhabditis elegans MAPK phosphatase VHP-1 mediates a novel JNK-like signaling pathway in stress response. EMBO J. 2004;23: 2226–2234. pmid:15116070 doi: 10.1038/sj.emboj.7600226
|
[33] | Maeda T, Tsai AY, Saito H. Mutations in a protein tyrosine phosphatase gene (PTP2) and a protein serine/threonine phosphatase gene (PTC1) cause a synthetic growth defect in Saccharomyces cerevisiae. Mol Cell Biol. 1993;13: 5408–5417. pmid:8395005
|
[34] | Gerwins P, Blank JL, Johnson GL. Cloning of a novel mitogen-activated protein kinase kinase kinase, MEKK4, that selectively regulates the c-Jun amino terminal kinase pathway. J Biol Chem. 1997;272: 8288–8295. pmid:9079650 doi: 10.1074/jbc.272.13.8288
|
[35] | Takekawa M, Posas F, Saito H. A human homolog of the yeast Ssk2/Ssk22 MAP kinase kinase kinases, MTK1, mediates stress-induced activation of the p38 and JNK pathways. EMBO J. 1997;16: 4973–4982. pmid:9305639 doi: 10.1093/emboj/16.16.4973
|
[36] | Takekawa M, Saito H. A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell. 1998;95: 521–530. pmid:9827804 doi: 10.1016/s0092-8674(00)81619-0
|
[37] | Horie T, Tatebayashi K, Yamada R, Saito H. Phosphorylated Ssk1 prevents unphosphorylated Ssk1 from activating the Ssk2 mitogen-activated protein kinase kinase kinase in the yeast high-osmolarity glycerol osmoregulatory pathway. Mol Cell Biol. 2008;28: 5172–5183. doi: 10.1128/MCB.00589-08. pmid:18573873
|
[38] | Longtine MS, McKenzie A 3rd, Demarini DJ, Shah NG, Wach A, Brachat A, et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast. 1998;14: 953–961. pmid:9717241 doi: 10.1002/(sici)1097-0061(199807)14:10<953::aid-yea293>3.0.co;2-u
|
[39] | Kaiser CA, Adams A, Gottschling DE. Methods in yeast genetics. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY; 1994.
|
[40] | Orlova M, Barrett L, Kuchin S. Detection of endogenous Snf1 and its activation state: application to Saccharomyces and Candida species. Yeast. 2008;25: 745–754. doi: 10.1002/yea.1628. pmid:18949820
|
[41] | Kushnirov VV. Rapid and reliable protein extraction from yeast. Yeast. 2000;16: 857–860. pmid:10861908 doi: 10.1002/1097-0061(20000630)16:9<857::aid-yea561>3.0.co;2-b
|