全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2015 

The Saccharomyces cerevisiae AMPK, Snf1, Negatively Regulates the Hog1 MAPK Pathway in ER Stress Response

DOI: 10.1371/journal.pgen.1005491

Full-Text   Cite this paper   Add to My Lib

Abstract:

Accumulation of unfolded proteins in the lumen of the endoplasmic reticulum (ER) causes ER stress. Snf1, the Saccharomyces cerevisiae ortholog of AMP–activated protein kinase (AMPK), plays a crucial role in the response to various environmental stresses. However, the role of Snf1 in ER stress response remains poorly understood. In this study, we characterize Snf1 as a negative regulator of Hog1 MAPK in ER stress response. The snf1 mutant cells showed the ER stress resistant phenotype. In contrast, Snf1-hyperactivated cells were sensitive to ER stress. Activated Hog1 levels were increased by snf1 mutation, although Snf1 hyperactivation interfered with Hog1 activation. Ssk1, a specific activator of MAPKKK functioning upstream of Hog1, was induced by ER stress, and its induction was inhibited in a manner dependent on Snf1 activity. Furthermore, we show that the SSK1 promoter is important not only for Snf1-modulated regulation of Ssk1 expression, but also for Ssk1 function in conferring ER stress tolerance. Our data suggest that Snf1 downregulates ER stress response signal mediated by Hog1 through negatively regulating expression of its specific activator Ssk1 at the transcriptional level. We also find that snf1 mutation upregulates the unfolded protein response (UPR) pathway, whereas Snf1 hyperactivation downregulates the UPR activity. Thus, Snf1 plays pleiotropic roles in ER stress response by negatively regulating the Hog1 MAPK pathway and the UPR pathway.

References

[1]  Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334: 1081–1086. doi: 10.1126/science.1209038. pmid:22116877
[2]  Lindholm D, Wootz H, Korhonen L. ER stress and neurodegenerative diseases. Cell Death Differ. 2006;13: 385–392. pmid:16397584 doi: 10.1038/sj.cdd.4401778
[3]  Mori K. Signalling pathways in the unfolded protein response: development from yeast to mammals. J Biochem. 2009;146: 743–750. doi: 10.1093/jb/mvp166. pmid:19861400
[4]  Parsons AB, Brost RL, Ding H, Li Z, Zhang C, Sheikh B, et al. Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol. 2004;22: 62–69. pmid:14661025 doi: 10.1038/nbt919
[5]  Hedbacker K, Carlson M. SNF1/AMPK pathways in yeast. Front Biosci. 2008;13: 2408–2420. pmid:17981722 doi: 10.2741/2854
[6]  Broach JR. Nutritional control of growth and development in yeast. Genetics. 2012;192: 73–105. doi: 10.1534/genetics.111.135731. pmid:22964838
[7]  Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13: 251–262. doi: 10.1038/nrm3311. pmid:22436748
[8]  Estruch F, Treitel MA, Yang X, Carlson M. N-terminal mutations modulate yeast SNF1 protein kinase function. Genetics. 1992;132: 639–650. pmid:1468623
[9]  McCartney RR, Schmidt MC. Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J Biol Chem. 2001;276: 36460–36406. pmid:11486005 doi: 10.1074/jbc.m104418200
[10]  Nath N, McCartney RR, Schmidt MC. Yeast Pak1 kinase associates with and activates Snf1. Mol Cell Biol. 2003;23: 3909–3917. pmid:12748292 doi: 10.1128/mcb.23.11.3909-3917.2003
[11]  Hong SP, Leiper FC, Woods A, Carling D, Carlson M. Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci U S A. 2003;100: 8839–8843. pmid:12847291 doi: 10.1073/pnas.1533136100
[12]  Sutherland CM, Hawley SA, McCartney RR, Leech A, Stark MJ, Schmidt MC, et al. Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex. Curr Biol. 2003;13: 1299–1305. pmid:12906789 doi: 10.1016/s0960-9822(03)00459-7
[13]  Tu J, Carlson M. REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae. EMBO J. 1995;14: 5939–5946. pmid:8846786
[14]  Sanz P, Alms GR, Haystead TA, Carlson M. Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase. Mol Cell Biol. 2000;20: 1321–1328. pmid:10648618 doi: 10.1128/mcb.20.4.1321-1328.2000
[15]  Hong SP, Carlson M. Regulation of Snf1 protein kinase in response to environmental stress. J Biol Chem. 2007;282: 16838–16845. pmid:17438333 doi: 10.1074/jbc.m700146200
[16]  Saito H, Posas F. Response to hyperosmotic stress. Genetics. 2012;192: 289–318. doi: 10.1534/genetics.112.140863. pmid:23028184
[17]  Brewster JL, Gustin MC. Hog1: 20 years of discovery and impact. Sci Signal. 2014;7: re7. doi: 10.1126/scisignal.2005458. pmid:25227612
[18]  Bicknell AA, Tourtellotte J, Niwa M. Late phase of the endoplasmic reticulum stress response pathway is regulated by Hog1 MAP kinase. J Biol Chem. 2010;285: 17545–17555. doi: 10.1074/jbc.M109.084681. pmid:20382742
[19]  Torres-Quiroz F, García-Marqués S, Coria R, Randez-Gil F, Prieto JA. The activity of yeast Hog1 MAPK is required during endoplasmic reticulum stress induced by tunicamycin exposure. J Biol Chem. 2010;285: 20088–20096. doi: 10.1074/jbc.M109.063578. pmid:20430884
[20]  Feng ZH, Wilson SE, Peng ZY, Schlender KK, Reimann EM, Trumbly RJ. The yeast GLC7 gene required for glycogen accumulation encodes a type 1 protein phosphatase. J Biol Chem. 1991;266: 23796–23801. pmid:1660885
[21]  Cannon JF, Pringle JR, Fiechter A, Khalil M. Characterization of glycogen-deficient glc mutants of Saccharomyces cerevisiae. Genetics. 1994;136: 485–503. pmid:8150278
[22]  Tatebayashi K, Takekawa M, Saito H. A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway. EMBO J. 2003;22: 3624–3634. pmid:12853477 doi: 10.1093/emboj/cdg353
[23]  Kyriakis JM, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev. 2012;92: 689–737. doi: 10.1152/physrev.00028.2011. pmid:22535895
[24]  Wurgler-Murphy SM, Maeda T, Witten EA, Saito H. Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases. Mol Cell Biol. 1997;17: 1289–1297. pmid:9032256
[25]  Jacoby T, Flanagan H, Faykin A, Seto AG, Mattison C, Ota I. Two protein-tyrosine phosphatases inactivate the osmotic stress response pathway in yeast by targeting the mitogen-activated protein kinase, Hog1. J Biol Chem. 1997;272: 17749–17755. pmid:9211927 doi: 10.1074/jbc.272.28.17749
[26]  Maeda T, Wurgler-Murphy SM, Saito H. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature. 1994;369: 242–245. pmid:8183345 doi: 10.1038/369242a0
[27]  Maeda T, Takekawa M, Saito H. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science. 1995;269: 554–558. pmid:7624781 doi: 10.1126/science.7624781
[28]  Ferrer-Dalmau J, Randez-Gil F, Marquina M, Prieto JA, Casamayor A. Protein kinase Snf1 is involved in the proper regulation of the unfolded protein response in Saccharomyces cerevisiae. Biochem J. 2015;468: 33–47. doi: 10.1042/BJ20140734. pmid:25730376
[29]  Mattison CP, Spencer SS, Kresge KA, Lee J, Ota IM. Differential regulation of the cell wall integrity mitogen-activated protein kinase pathway in budding yeast by the protein tyrosine phosphatases Ptp2 and Ptp3. Mol Cell Biol. 1999;19: 7651–760. pmid:10523653
[30]  Chawla A, Chakrabarti S, Ghosh G, Niwa M. Attenuation of yeast UPR is essential for survival and is mediated by IRE1 kinase. J Cell Biol. 2011;193: 41–50. doi: 10.1083/jcb.201008071. pmid:21444691
[31]  Rubio C, Pincus D, Korennykh A, Schuck S, El-Samad H, Walter P. Homeostatic adaptation to endoplasmic reticulum stress depends on Ire1 kinase activity. J Cell Biol. 2011;193: 171–184. doi: 10.1083/jcb.201007077. pmid:21444684
[32]  Mizuno T, Hisamoto N, Terada T, Kondo T, Adachi M, Nishida E, et al. The Caenorhabditis elegans MAPK phosphatase VHP-1 mediates a novel JNK-like signaling pathway in stress response. EMBO J. 2004;23: 2226–2234. pmid:15116070 doi: 10.1038/sj.emboj.7600226
[33]  Maeda T, Tsai AY, Saito H. Mutations in a protein tyrosine phosphatase gene (PTP2) and a protein serine/threonine phosphatase gene (PTC1) cause a synthetic growth defect in Saccharomyces cerevisiae. Mol Cell Biol. 1993;13: 5408–5417. pmid:8395005
[34]  Gerwins P, Blank JL, Johnson GL. Cloning of a novel mitogen-activated protein kinase kinase kinase, MEKK4, that selectively regulates the c-Jun amino terminal kinase pathway. J Biol Chem. 1997;272: 8288–8295. pmid:9079650 doi: 10.1074/jbc.272.13.8288
[35]  Takekawa M, Posas F, Saito H. A human homolog of the yeast Ssk2/Ssk22 MAP kinase kinase kinases, MTK1, mediates stress-induced activation of the p38 and JNK pathways. EMBO J. 1997;16: 4973–4982. pmid:9305639 doi: 10.1093/emboj/16.16.4973
[36]  Takekawa M, Saito H. A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell. 1998;95: 521–530. pmid:9827804 doi: 10.1016/s0092-8674(00)81619-0
[37]  Horie T, Tatebayashi K, Yamada R, Saito H. Phosphorylated Ssk1 prevents unphosphorylated Ssk1 from activating the Ssk2 mitogen-activated protein kinase kinase kinase in the yeast high-osmolarity glycerol osmoregulatory pathway. Mol Cell Biol. 2008;28: 5172–5183. doi: 10.1128/MCB.00589-08. pmid:18573873
[38]  Longtine MS, McKenzie A 3rd, Demarini DJ, Shah NG, Wach A, Brachat A, et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast. 1998;14: 953–961. pmid:9717241 doi: 10.1002/(sici)1097-0061(199807)14:10<953::aid-yea293>3.0.co;2-u
[39]  Kaiser CA, Adams A, Gottschling DE. Methods in yeast genetics. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY; 1994.
[40]  Orlova M, Barrett L, Kuchin S. Detection of endogenous Snf1 and its activation state: application to Saccharomyces and Candida species. Yeast. 2008;25: 745–754. doi: 10.1002/yea.1628. pmid:18949820
[41]  Kushnirov VV. Rapid and reliable protein extraction from yeast. Yeast. 2000;16: 857–860. pmid:10861908 doi: 10.1002/1097-0061(20000630)16:9<857::aid-yea561>3.0.co;2-b

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133