全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Genetics  2015 

Arabidopsis AtPLC2 Is a Primary Phosphoinositide-Specific Phospholipase C in Phosphoinositide Metabolism and the Endoplasmic Reticulum Stress Response

DOI: 10.1371/journal.pgen.1005511

Full-Text   Cite this paper   Add to My Lib

Abstract:

Phosphoinositides represent important lipid signals in the plant development and stress response. However, multiple isoforms of the phosphoinositide biosynthetic genes hamper our understanding of the pivotal enzymes in each step of the pathway as well as their roles in plant growth and development. Here, we report that phosphoinositide-specific phospholipase C2 (AtPLC2) is the primary phospholipase in phosphoinositide metabolism and is involved in seedling growth and the endoplasmic reticulum (ER) stress responses in Arabidopsis thaliana. Lipidomic profiling of multiple plc mutants showed that the plc2-1 mutant increased levels of its substrates phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate, suggesting that the major phosphoinositide metabolic pathway is impaired. AtPLC2 displayed a distinct tissue expression pattern and localized at the plasma membrane in different cell types, where phosphoinositide signaling occurs. The seedlings of plc2-1 mutant showed growth defect that was complemented by heterologous expression of AtPLC2, suggesting that phosphoinositide-specific phospholipase C activity borne by AtPLC2 is required for seedling growth. Moreover, the plc2-1 mutant showed hypersensitive response to ER stress as evidenced by changes in relevant phenotypes and gene expression profiles. Our results revealed the primary enzyme in phosphoinositide metabolism, its involvement in seedling growth and an emerging link between phosphoinositide and the ER stress response.

References

[1]  Boss WF, Im YJ. Phosphoinositide signaling. Annu Rev Plant Biol. 2012;63: 409–429. doi: 10.1146/annurev-arplant-042110-103840. pmid:22404474
[2]  Arisz SA, Testerink C, Munnik T. Plant PA signaling via diacylglycerol kinase. Biochim Biophys Acta. 2009;1791: 869–875. doi: 10.1016/j.bbalip.2009.04.006. pmid:19394438
[3]  Nakamura Y, Awai K, Masuda T, Yoshioka Y, Takamiya K, Ohta H. A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis. J Biol Chem. 2005;280: 7469–7476. doi: 10.1074/jbc. pmid:15618226
[4]  Gaude N, Nakamura Y, Scheible WR, Ohta H, D?rmann P. Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. Plant J. 2008;56: 28–39. doi: 10.1111/j.1365-313X.2008.03582.x. pmid:18564386
[5]  Mueller-Roeber B, Pical C. Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. Plant Physiol. 2002;130: 22–46. doi: 10.1104/Pp.004770. pmid:12226484
[6]  Hunt L, Otterhag L, Lee JC, Lasheen T, Hunt J, Seki M, et al. Gene-specific expression and calcium activation of Arabidopsis thaliana phospholipase C isoforms. New Phytol. 2004;162: 643–654. doi: 10.1111/J.1469-8137.2004.01069.X.
[7]  Tasma IM, Brendel V, Whitham SA, Bhattacharyya MK. Expression and evolution of the phosphoinositide-specific phospholipase C gene family in Arabidopsis thaliana. Plant Physiol Biochem. 2008;46: 627–637. doi: 10.1016/j.plaphy.2008.04.015. pmid:18534862
[8]  Hirayama T, Ohto C, Mizoguchi T, Shinozaki K. A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. Proc Natl Acad Sci USA. 1995;92: 3903–3907. doi: 10.1073/pnas.92.9.3903. pmid:7732004
[9]  Sanchez JP, Chua NH. Arabidopsis PLC1 is required for secondary responses to abscisic acid signals. Plant Cell. 2001;13: 1143–1154. doi: 10.1105/tpc.13.5.1143. pmid:11340187
[10]  Zheng SZ, Liu YL, Li B, Shang ZL, Zhou RG, Sun DY. Phosphoinositide-specific phospholipase C9 is involved in the thermotolerance of Arabidopsis. Plant J. 2012;69: 689–700. doi: 10.1111/j.1365-313X.2011.04823.x. pmid:22007900
[11]  Gao K, Liu YL, Li B, Zhou RG, Sun DY, Zheng SZ. Arabidopsis thaliana phosphoinositide-specific phospholipase C isoform 3 (AtPLC3) and AtPLC9 have an additive effect on thermotolerance. Plant Cell Physiol. 2014;55: 1873–1883. doi: 10.1093/pcp/pcu116. pmid:25149227
[12]  Hirayama T, Mitsukawa N, Shibata D, Shinozaki K. AtPLC2, a gene encoding phosphoinositide-specific phospholipase C, is constitutively expressed in vegetative and floral tissues in Arabidopsis thaliana. Plant Mol Biol. 1997;34: 175–180. doi: 10.1023/A:1005885230896. pmid:9177324
[13]  Liu JX, Srivastava R, Che P, Howell SH. Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling. Plant J. 2007;51: 897–909. doi: 10.1111/j.1365-313X.2007.03195.x. pmid:17662035
[14]  Deng Y, Humbert S, Liu JX, Srivastava R, Rothstein SJ, Howell SH. Heat induces the splicing by IRE1 of a mRNA encoding a transcription factor involved in the unfolded protein response in Arabidopsis. Proc Natl Acad Sci USA. 2011;108: 7247–7252. doi: 10.1073/pnas.1102117108. pmid:21482766
[15]  Cox JS, Walter P. A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell. 1996;87: 391–404. doi: 10.1016/S0092-8674(00)81360-4. pmid:8898193
[16]  Mori K, Ma WZ, Gething MJ, Sambrook J. A transmembrane protein with a Cdc2+/Cdc28-related kinase-activity is required for signaling from the ER to the nucleus. Cell. 1993;74: 743–756. doi: 10.1016/0092-8674(93)90521-Q. pmid:8358794
[17]  Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8: 519–529. doi: 10.1038/nrm2199. pmid:17565364
[18]  Brodsky JL, McCracken AA. ER-associated and proteasome-mediated protein degradation: How two topologically restricted events came together. Trends Cell Biol. 1997;7: 151–156. doi: 10.1016/S0962-8924(97)01020-9. pmid:17708933
[19]  Tsai B, Ye Y, Rapoport TA. Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat Rev Mol Cell Biol. 2002;3: 246–255. doi: 10.1038/nrm780. pmid:11994744
[20]  Kanehara K, Kawaguchi S, Ng DT. The EDEM and Yos9p families of lectin-like ERAD factors. Semin Cell Dev Biol. 2007;18: 743–50. doi: 10.1016/j.semcdb.2007.09.007. pmid:17945519
[21]  Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell. 2000;5: 897–904. doi: 10.1016/S1097-2765(00)80330-5. pmid:10882126
[22]  Brodsky JL, Skach WR. Protein folding and quality control in the endoplasmic reticulum: Recent lessons from yeast and mammalian cell systems. Curr Opin Cell Biol. 2011;23: 464–475. doi: 10.1016/j.ceb.2011.05.004. pmid:21664808
[23]  Iwata Y, Fedoroff NV, Koizumi N. Arabidopsis bZIP60 is a proteolysis-activated transcription factor involved in the endoplasmic reticulum stress response. Plant Cell. 2008;20: 3107–3121. doi: 10.1105/tpc.108.061002. pmid:19017746
[24]  Su W, Liu Y, Xia Y, Hong Z, Li J. Conserved endoplasmic reticulum-associated degradation system to eliminate mutated receptor-like kinases in Arabidopsis. Proc Natl Acad Sci U S A. 2010;108: 870–875. doi: 10.1073/pnas.1013251108. pmid:21187394
[25]  Liu JX, Howell SH. Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants. Plant Cell. 2010;22: 2930–2942. doi: 10.1105/tpc.110.078154. pmid:20876830
[26]  Howell SH. Endoplasmic reticulum stress responses in plants. Annu Rev Plant Biol. 2013;64: 477–499. doi: 10.1146/annurev-arplant-050312-120053. pmid:23330794
[27]  Fagone P, Jackowski S. Membrane phospholipid synthesis and endoplasmic reticulum function. J Lipid Res. 2009;50 Suppl:S311–316. doi: 10.1194/jlr.R800049-JLR200. pmid:18952570
[28]  Otterhag L, Sommarin M, Pical C. N-terminal EF-hand-like domain is required for phosphoinositide-specific phospholipase C activity in Arabidopsis thaliana. FEBS Lett. 2001;497: 165–170. doi: 10.1016/S0014-5793(01)02453-X. pmid:11377433
[29]  Liu JX, Srivastava R, Che P, Howell SH. An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28. Plant Cell. 2007;19: 4111–4119. doi: 10.1105/tpc.106.050021. pmid:18156219
[30]  Martinez IM, Chrispeels MJ. Genomic analysis of the unfolded protein response in Arabidopsis shows its connection to important cellular processes. Plant Cell. 2003;15: 561–576. doi: 10.1105/tpc.007609. pmid:12566592
[31]  Noh SJ, Kwon CS, Oh DH, Moon JS, Chung WI. Expression of an evolutionarily distinct novel BiP gene during the unfolded protein response in Arabidopsis thaliana. Gene. 2003;311: 81–91. doi: 10.1016/S0378-1119(03)00559-6. pmid:12853141
[32]  Cao Z, Zhang J, Li Y, Xu X, Liu G, Bhattacharrya MK, et al. Preparation of polyclonal antibody specific for AtPLC4, an Arabidopsis phosphatidylinositol-specific phospholipase C in rabbits. Protein Expr Purif. 2007;52: 306–312. doi: 10.1016/j.pep.2006.10.007. pmid:17142056
[33]  Zhong R, Burk DH, Morrison WH, Ye ZH. FRAGILE FIBER3, an Arabidopsis gene encoding a type II inositol polyphosphate 5-phosphatase, is required for secondary wall synthesis and actin organization in fiber cells. Plant Cell. 2004;16: 3242–3259. doi: 10.1105/tpc.104.027466. pmid:15539468
[34]  Zhong R, Burk DH, Nairn CJ, Wood-Jones A, Morrison WH III, Ye ZH. Mutation of SAC1, an Arabidopsis SAC domain phosphoinositide phosphatase, causes alterations in cell morphogenesis, cell wall synthesis, and actin organization. Plant Cell. 2005;17: 1449–1466. doi: 10.1105/tpc.105.031377. pmid:15805481
[35]  Koizumi K, Naramoto S, Sawa S, Yahara N, Ueda T, Nakano A, et al. VAN3 ARF-GAP-mediated vesicle transport is involved in leaf vascular network formation. Development. 2005;132: 1699–1711. doi: 10.1242/dev.01716. pmid:15743878
[36]  Carland FM, Nelson T. COTYLEDON VASCULAR PATTERN2-mediated inositol (1,4,5) triphosphate signal transduction is essential for closed venation patterns of Arabidopsis foliar organs. Plant Cell. 2004;16: 1263–1275. doi: 10.1105/tpc.021030. pmid:15100402
[37]  Naramoto S, Sawa S, Koizumi K, Uemura T, Ueda T, Friml J, et al. Phosphoinositide-dependent regulation of VAN3 ARF-GAP localization and activity essential for vascular tissue continuity in plants. Development. 2009;136: 1529–1538. doi: 10.1242/dev.030098. pmid:19363154
[38]  Kim DH, Eu YJ, Yoo CM, Kim YW, Pih KT, Jin JB, et al. Trafficking of phosphatidylinositol 3-phosphate from the trans-Golgi network to the lumen of the central vacuole in plant cells. Plant Cell. 2001;13: 287–301. doi: 10.1105/tpc.13.2.287. pmid:11226186
[39]  Thibault G, Shui G, Kim W, McAlister GC, Ismail N, Gygi SP, et al. The membrane stress response buffers lethal effects of lipid disequilibrium by reprogramming the protein homeostasis network. Mol Cell. 2012;48: 16–27. doi: 10.1016/j.molcel.2012.08.016. pmid:23000174
[40]  van der Sanden MH, Houweling M, van Golde LM, Vaandrager AB. Inhibition of phosphatidylcholine synthesis induces expression of the endoplasmic reticulum stress and apoptosis-related protein CCAAT/enhancer-binding protein-homologous protein (CHOP/GADD153). Biochem J. 2003;369: 643–650. doi: 10.1042/BJ20020285. pmid:12370080
[41]  Yasuda E, Nagasawa K, Nishida K, Fujimoto S. Decreased expression of phospholipase C-beta 1 protein in endoplasmic reticulum stress-loaded neurons. Biol Pharm Bull. 2008;31: 719–721. doi: 10.1248/bpb.31.719. pmid:18379069
[42]  Sriburi R, Jackowski S, Mori K, Brewer JW. XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J Cell Biol. 2004;167: 35–41. doi: 10.1083/Jcb.200406136. pmid:15466483
[43]  Winnay JN, Boucher J, Mori MA, Ueki K, Kahn CR. A regulatory subunit of phosphoinositide 3-kinase increases the nuclear accumulation of X-box-binding protein-1 to modulate the unfolded protein response. Nat Med. 2010;16: 438–445. doi: 10.1038/nm.2121. pmid:20348923
[44]  Thakur PC, Stuckenholz C, Rivera MR, Davison JM, Yao JK, Amsterdam A, et al. Lack of de novo phosphatidylinositol synthesis leads to endoplasmic reticulum stress and hepatic steatosis in cdipt-deficient zebrafish. Hepatology. 2011;54: 452–462. doi: 10.1002/hep.24349. pmid:21488074
[45]  Thakur PC, Davison JM, Stuckenholz C, Lu L, Bahary N. Dysregulated phosphatidylinositol signaling promotes endoplasmic-reticulum-stress-mediated intestinal mucosal injury and inflammation in zebrafish. Dis Model Mech. 2014;7: 93–106. doi: 10.1242/dmm.012864. pmid:24135483
[46]  Yang ZT, Lu SJ, Wang MJ, Bi DL, Sun L, Zhou SF, et al. A plasma membrane-tethered transcription factor, NAC062/ANAC062/NTL6, mediates the unfolded protein response in Arabidopsis. Plant J. 2014;79: 1033–1043. doi: 10.1111/Tpj.12604. pmid:24961665
[47]  Kim YJ, Guzman-Hernandez ML, Balla T. A highly dynamic ER-derived phosphatidylinositol-synthesizing organelle supplies phosphoinositides to cellular membranes. Dev Cell. 2011;21: 813–824. doi: 10.1016/j.devce1.2011.09.005. pmid:22075145
[48]  Wang PW, Hawkins TJ, Richardson C, Cummins I, Deeks MJ, Sparkes I, et al. The plant cytoskeleton, NET3C, and VAP27 mediate the link between the plasma membrane and endoplasmic reticulum. Curr Biol. 2014;24: 1397–1405. doi: 10.1016/J.Cub.2014.05.003. pmid:24909329
[49]  Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum. 1962;15: 473–497. doi: 10.1111/J.1399-3054.1962.Tb08052.X.
[50]  Karimi M, De Meyer B, Hilson P. Modular cloning in plant cells. Trends Plant Sci. 2005;10: 103–105. doi: 10.1016/j.tplants.2005.01.008. pmid:15749466
[51]  Sawano A, Miyawaki A. Directed evolution of green fluorescent protein by a new versatile PCR strategy for site-directed and semi-random mutagenesis. Nucleic Acids Res. 2000;28: E78. doi: 10.1093/nar/28.16.e78. pmid:10931937
[52]  Drobak BK, Brewin NJ, Hernandez LE. Extraction, separation, and analysis of plant phosphoinositides and complex glycolipids. Methods Mol Biol. 2000;141: 157–174. doi: 10.1385/1-59259-067-5:157. pmid:10820743
[53]  Nasuhoglu C, Feng S, Mao J, Yamamoto M, Yin HL, Earnest S, et al. Nonradioactive analysis of phosphatidylinositides and other anionic phospholipids by anion-exchange high-performance liquid chromatography with suppressed conductivity detection. Anal Biochem. 2002;301: 243–254. doi: 10.1006/abio.2001.5489. pmid:11814295
[54]  Nakamura Y, Teo NZW, Shui GH, Chua CHL, Cheong WF, Parameswaran S, et al. Transcriptomic and lipidomic profiles of glycerolipids during Arabidopsis flower development. New Phytol. 2014;203: 310–322. doi: 10.1111/Nph.12774. pmid:24684726

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133