全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Chikungunya Virus Transmission Potential by Local Aedes Mosquitoes in the Americas and Europe

DOI: 10.1371/journal.pntd.0003780

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Chikungunya virus (CHIKV), mainly transmitted in urban areas by the mosquitoes Aedes aegypti and Aedes albopictus, constitutes a major public health problem. In late 2013, CHIKV emerged on Saint-Martin Island in the Caribbean and spread throughout the region reaching more than 40 countries. Thus far, Ae. aegypti mosquitoes have been implicated as the sole vector in the outbreaks, leading to the hypothesis that CHIKV spread could be limited only to regions where this mosquito species is dominant. Methodology/Principal Findings We determined the ability of local populations of Ae. aegypti and Ae. albopictus from the Americas and Europe to transmit the CHIKV strain of the Asian genotype isolated from Saint-Martin Island (CHIKV_SM) during the recent epidemic, and an East-Central-South African (ECSA) genotype CHIKV strain isolated from La Réunion Island (CHIKV_LR) as a well-characterized control virus. We also evaluated the effect of temperature on transmission of CHIKV_SM by European Ae. albopictus. We found that (i) Aedes aegypti from Saint-Martin Island transmit CHIKV_SM and CHIKV_LR with similar efficiency, (ii) Ae. aegypti from the Americas display similar transmission efficiency for CHIKV_SM, (iii) American and European populations of the alternative vector species Ae. albopictus were as competent as Ae. aegypti populations with respect to transmission of CHIKV_SM and (iv) exposure of European Ae. albopictus to low temperatures (20°C) significantly reduced the transmission potential for CHIKV_SM. Conclusions/Significance CHIKV strains belonging to the ECSA genotype could also have initiated local transmission in the new world. Additionally, the ongoing CHIKV outbreak in the Americas could potentially spread throughout Ae. aegypti- and Ae. albopictus-infested regions of the Americas with possible imported cases of CHIKV to Ae. albopictus-infested regions in Europe. Colder temperatures may decrease the local transmission of CHIKV_SM by European Ae. albopictus, potentially explaining the lack of autochthonous transmission of CHIKV_SM in Europe despite the hundreds of imported CHIKV cases returning from the Caribbean.

References

[1]  Weaver SC (2014) Arrival of chikungunya virus in the new world: prospects for spread and impact on public health. PLoS Negl Trop Dis 8: e2921. doi: 10.1371/journal.pntd.0002921. pmid:24967777
[2]  Girod R, Gaborit P, Marrama L, Etienne M, Ramdini C, et al. (2011) High susceptibility to Chikungunya virus of Aedes aegypti from the French West Indies and French Guiana. Trop Med Int Health 16: 134–139. doi: 10.1111/j.1365-3156.2010.02613.x. pmid:21371212
[3]  Vega-Rua A, Zouache K, Girod R, Failloux AB, Lourenco-de-Oliveira R (2014) High level of vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of Chikungunya virus. J Virol 88: 6294–6306. doi: 10.1128/JVI.00370-14. pmid:24672026
[4]  Gibney KB, Fischer M, Prince HE, Kramer LD, St George K, et al. (2011) Chikungunya fever in the United States: a fifteen year review of cases. Clin Infect Dis 52: e121–126. doi: 10.1093/cid/ciq214. pmid:21242326
[5]  (PAHO) PAHO (2007) Health in the Americas. In: 622 SaTPN, editor. pp. 745.
[6]  Leparc-Goffart I, Nougairede A, Cassadou S, Prat C, de Lamballerie X (2014) Chikungunya in the Americas. Lancet 383: 514. doi: 10.1016/S0140-6736(14)60185-9. pmid:24506907
[7]  Cassadou S, Boucau S, Petit-Sinturel M, Huc P, Leparc-Goffart I, et al. (2014) Emergence of chikungunya fever on the French side of Saint Martin island, October to December 2013. Euro Surveill 19. doi: 10.2807/1560-7917.es2014.19.13.20752
[8]  (PAHO) PAHO (2014) Chikungunya. Number of Reported Cases of Chikungunya Fever in the Americas.
[9]  Morrison TE (2014) Reemergence of chikungunya virus. J Virol 88: 11644–11647. doi: 10.1128/JVI.01432-14. pmid:25078691
[10]  Tsetsarkin KA, Chen R, Leal G, Forrester N, Higgs S, et al. (2011) Chikungunya virus emergence is constrained in Asia by lineage-specific adaptive landscapes. Proc Natl Acad Sci U S A 108: 7872–7877. doi: 10.1073/pnas.1018344108. pmid:21518887
[11]  Carvalho RG, Lourenco-de-Oliveira R, Braga IA (2014) Updating the geographical distribution and frequency of Aedes albopictus in Brazil with remarks regarding its range in the Americas. Mem Inst Oswaldo Cruz 109: 787–796. pmid:25317707 doi: 10.1590/0074-0276140304
[12]  Paty MC, Six C, Charlet F, Heuze G, Cochet A, et al. (2014) Large number of imported chikungunya cases in mainland France, 2014: a challenge for surveillance and response. Euro Surveill 19: 20856. pmid:25060572 doi: 10.2807/1560-7917.es2014.19.28.20856
[13]  Medlock JM, Hansford KM, Schaffner F, Versteirt V, Hendrickx G, et al. (2012) A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector Borne Zoonotic Dis 12: 435–447. doi: 10.1089/vbz.2011.0814. pmid:22448724
[14]  Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli AC, et al. (2007) Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370: 1840–1846. pmid:18061059 doi: 10.1016/s0140-6736(07)61779-6
[15]  Grandadam M, Caro V, Plumet S, Thiberge JM, Souares Y, et al. (2011) Chikungunya virus, southeastern France. Emerg Infect Dis 17: 910–913. doi: 10.3201/eid1705.101873. pmid:21529410
[16]  Vega-Rua A, Zouache K, Caro V, Diancourt L, Delaunay P, et al. (2013) High efficiency of temperate Aedes albopictus to transmit chikungunya and dengue viruses in the Southeast of France. PLoS One 8: e59716. doi: 10.1371/journal.pone.0059716. pmid:23527259
[17]  Zouache K, Fontaine A, Vega-Rua A, Mousson L, Thiberge JM, et al. (2014) Three-way interactions between mosquito population, viral strain and temperature underlying chikungunya virus transmission potential. Proc Biol Sci 281. doi: 10.1098/rspb.2014.1078
[18]  Stapleford KA, Coffey LL, Lay S, Borderia AV, Duong V, et al. (2014) Emergence and transmission of arbovirus evolutionary intermediates with epidemic potential. Cell host & microbe 15: 706–716. doi: 10.1016/j.chom.2014.05.008
[19]  Lambrechts L, Chevillon C, Albright RG, Thaisomboonsuk B, Richardson JH, et al. (2009) Genetic specificity and potential for local adaptation between dengue viruses and mosquito vectors. BMC Evol Biol 9: 160. doi: 10.1186/1471-2148-9-160. pmid:19589156
[20]  Tabachnick WJ (2013) Nature, nurture and evolution of intra-species variation in mosquito arbovirus transmission competence. Int J Environ Res Public Health 10: 249–277. doi: 10.3390/ijerph10010249. pmid:23343982
[21]  Lefevre T, Vantaux A, Dabire KR, Mouline K, Cohuet A (2013) Non-genetic determinants of mosquito competence for malaria parasites. PLoS Pathog 9: e1003365. doi: 10.1371/journal.ppat.1003365. pmid:23818841
[22]  Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, et al. (2011) Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc Natl Acad Sci U S A 108: 7460–7465. doi: 10.1073/pnas.1101377108. pmid:21502510
[23]  Schuffenecker I, Iteman I, Michault A, Murri S, Frangeul L, et al. (2006) Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med 3: e263. pmid:16700631 doi: 10.1371/journal.pmed.0030263
[24]  Voss JE, Vaney MC, Duquerroy S, Vonrhein C, Girard-Blanc C, et al. (2010) Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature 468: 709–712. doi: 10.1038/nature09555. pmid:21124458
[25]  Tsetsarkin KA, Chen R, Yun R, Rossi SL, Plante KS, et al. (2014) Multi-peaked adaptive landscape for chikungunya virus evolution predicts continued fitness optimization in Aedes albopictus mosquitoes. Nat Commun 5: 4084. doi: 10.1038/ncomms5084. pmid:24933611
[26]  Leo YS, Chow AL, Tan LK, Lye DC, Lin L, et al. (2009) Chikungunya outbreak, Singapore, 2008. Emerg Infect Dis 15: 836–837. doi: 10.3201/eid1505.081390. pmid:19402989
[27]  Dubrulle M, Mousson L, Moutailler S, Vazeille M, Failloux AB (2009) Chikungunya virus and Aedes mosquitoes: saliva is infectious as soon as two days after oral infection. PloS one 4: e5895. doi: 10.1371/journal.pone.0005895. pmid:19521520
[28]  Tilston N, Skelly C, Weinstein P (2009) Pan-European Chikungunya surveillance: designing risk stratified surveillance zones. Int J Health Geogr 8: 61. doi: 10.1186/1476-072X-8-61. pmid:19878588
[29]  Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, et al. (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475: 348–352. doi: 10.1038/nature10242. pmid:21776081
[30]  Roth A, Mercier A, Lepers C, Hoy D, Duituturaga S, et al. (2014) Concurrent outbreaks of dengue, chikungunya and Zika virus infections—an unprecedented epidemic wave of mosquito-borne viruses in the Pacific 2012–2014. Euro Surveill 19. doi: 10.2807/1560-7917.es2014.19.41.20929
[31]  Powers AM, Logue CH (2007) Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus. J Gen Virol 88: 2363–2377. pmid:17698645 doi: 10.1099/vir.0.82858-0
[32]  Vazeille M, Moutailler S, Coudrier D, Rousseaux C, Khun H, et al. (2007) Two Chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus. PLoS One 2: e1168. pmid:18000540 doi: 10.1371/journal.pone.0001168
[33]  Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S (2007) A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog 3: e201. pmid:18069894 doi: 10.1371/journal.ppat.0030201
[34]  Das B, Sahu A, Das M, Patra A, Dwibedi B, et al. (2012) Molecular investigations of chikungunya virus during outbreaks in Orissa, Eastern India in 2010. Infect Genet Evol 12: 1094–1101. doi: 10.1016/j.meegid.2012.03.012. pmid:22484761
[35]  Dupont-Rouzeyrol M, Caro V, Guillaumot L, Vazeille M, D'Ortenzio E, et al. (2012) Chikungunya virus and the mosquito vector Aedes aegypti in New Caledonia (South Pacific Region). Vector Borne Zoonotic Dis 12: 1036–1041. doi: 10.1089/vbz.2011.0937. pmid:23167500

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133