全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

High Rates of Asymptomatic, Sub-microscopic Plasmodium vivax Infection and Disappearing Plasmodium falciparum Malaria in an Area of Low Transmission in Solomon Islands

DOI: 10.1371/journal.pntd.0003758

Full-Text   Cite this paper   Add to My Lib

Abstract:

Introduction Solomon Islands is intensifying national efforts to achieve malaria elimination. A long history of indoor spraying with residual insecticides, combined recently with distribution of long lasting insecticidal nets and artemether-lumefantrine therapy, has been implemented in Solomon Islands. The impact of these interventions on local endemicity of Plasmodium spp. is unknown. Methods In 2012, a cross-sectional survey of 3501 residents of all ages was conducted in Ngella, Central Islands Province, Solomon Islands. Prevalence of Plasmodium falciparum, P. vivax, P. ovale and P. malariae was assessed by quantitative PCR (qPCR) and light microscopy (LM). Presence of gametocytes was determined by reverse transcription quantitative PCR (RT-qPCR). Results By qPCR, 468 Plasmodium spp. infections were detected (prevalence = 13.4%; 463 P. vivax, five mixed P. falciparum/P. vivax, no P. ovale or P. malariae) versus 130 by LM (prevalence = 3.7%; 126 P. vivax, three P. falciparum and one P. falciparum/P. vivax). The prevalence of P. vivax infection varied significantly among villages (range 3.0–38.5%, p<0.001) and across age groups (5.3–25.9%, p<0.001). Of 468 P. vivax infections, 72.9% were sub-microscopic, 84.5% afebrile and 60.0% were both sub-microscopic and afebrile. Local residency, low education level of the household head and living in a household with at least one other P. vivax infected individual increased the risk of P. vivax infection. Overall, 23.5% of P. vivax infections had concurrent gametocytaemia. Of all P. vivax positive samples, 29.2% were polyclonal by MS16 and msp1F3 genotyping. All five P. falciparum infections were detected in residents of the same village, carried the same msp2 allele and four were positive for P. falciparum gametocytes. Conclusion P. vivax infection remains endemic in Ngella, with the majority of cases afebrile and below the detection limit of LM. P. falciparum has nearly disappeared, but the risk of re-introductions and outbreaks due to travel to nearby islands with higher malaria endemicity remains.

References

[1]  Muller I, Bockarie M, Alpers M, Smith T. The epidemiology of malaria in Papua New Guinea. Trends Parasitol. 2003;19(6): 253–9. pmid:12798082 doi: 10.1016/s1471-4922(03)00091-6
[2]  Battle KE, Gething PW, Elyazar IR, Moyes CL, Sinka ME, Howes RE, et al. The global public health significance of Plasmodium vivax. Adv Parasitol. 2012;80: 1–111. English. doi: 10.1016/B978-0-12-397900-1.00001-3. pmid:23199486
[3]  Pacific Malaria Initiative Survey Group (PacMISC) on behalf of the Ministries of Health of Vanuatu, Solomon Islands. Malaria on isolated Melanesian islands prior to the initiation of malaria elimination activities. Malar J. 2010;9: 218. doi: 10.1186/1475-2875-9-218. pmid:20659316
[4]  World Health Organisation (WHO). World Malaria Report 2013. Geneva, Switzerland: World Health Organisation, 2013.
[5]  Solomon Islands Vector Borne Disease Control Program (SI NVBDCP). Historical Annual Malaria Records. Honiara, Solomon Islands: Ministry of Health.
[6]  Solomon Islands Vector Borne Disease Control Program (SI NVBDCP). Annual Malaria Report 2012. Honiara, Solomon Islands: Ministry of Health, 2013.
[7]  Avery J. The Epidemiology of Disappearing Malaria in the Solomon Islands. Sheffield, United Kingdom: University of Sheffield; 1977. .
[8]  Atkinson JA, Johnson ML, Wijesinghe R, Bobogare A, Losi L, O'Sullivan M, et al. Operational research to inform a sub-national surveillance intervention for malaria elimination in Solomon Islands. Malar J. 2012;1: 101. doi: 10.1186/1475-2875-11-101
[9]  Harris I, Sharrock WW, Bain LM, Gray KA, Bobogare A, Boaz L, et al. A large proportion of asymptomatic Plasmodium infections with low and sub-microscopic parasite densities in the low transmission setting of Temotu Province, Solomon Islands: challenges for malaria diagnostics in an elimination setting. Malar J. 2010;9:254. doi: 10.1186/1475-2875-9-254. pmid:20822506
[10]  Okell LC, Bousema T, Griffin JT, Ouedraogo AL, Ghani AC, Drakeley CJ. Factors determining the occurrence of submicroscopic malaria infections and their relevance for control. Nat Commun. 2012; 12 (3):1237. doi: 10.1038/ncomms2241
[11]  Alves FP, Durlacher RR, Menezes MJ, Krieger H, Silva LH, Camargo EP. High prevalence of asymptomatic Plasmodium vivax and Plasmodium falciparum infections in native Amazonian populations. Am J Trop Med Hyg. 2002 Jun;66(6):641–8. pmid:12224567
[12]  Mueller I, Widmer S, Michel D, Maraga S, McNamara DT, Kiniboro B, et al. High sensitivity detection of Plasmodium species reveals positive correlations between infections of different species, shifts in age distribution and reduced local variation in Papua New Guinea. Malar J. 2009;8: 41. doi: 10.1186/1475-2875-8-41. pmid:19284594
[13]  Steenkeste N, Rogers WO, Okell L, Jeanne I, Incardona S, Duval L, et al. Sub-microscopic malaria cases and mixed malaria infection in a remote area of high malaria endemicity in Rattanakiri province, Cambodia: implication for malaria elimination. Malar J. 2010 Apr 22;9:108. doi: 10.1186/1475-2875-9-108. pmid:20409349
[14]  Boyd MF, Kitchen SF. On the infectiousness of patients infected with Plasmodium vivax and Plasmodium falciparum. Am J Trop Med Hyg. 1937 (17):253–62.
[15]  Jeffery GM, Eyles DE. Infectivity to Mosquitoes of Plasmodium falciparum as Related to Gametocyte Density and Duration of Infection. Am J Trop Med Hyg. 1955;4(5):781–9. pmid:13259002
[16]  Nwakanma D, Kheir A, Sowa M, Dunyo S, Jawara M, Pinder M, et al. High gametocyte complexity and mosquito infectivity of Plasmodium falciparum in the Gambia. Int J Parasitol. 2008 Feb;38(2):219–27. pmid:17709108 doi: 10.1016/j.ijpara.2007.07.003
[17]  Ouedraogo AL, Bousema T, Schneider P, de Vlas SJ, Ilboudo-Sanogo E, Cuzin-Ouattara N, et al. Substantial contribution of submicroscopical Plasmodium falciparum gametocyte carriage to the infectious reservoir in an area of seasonal transmission. PLoS One. 2009;4(12):e8410. doi: 10.1371/journal.pone.0008410. pmid:20027314
[18]  Sattabongkot J, Maneechai N, Rosenberg R. Plasmodium vivax: gametocyte infectivity of naturally infected Thai adults. Parasitology. 1991 Feb;102 Pt 1:27–31. doi: 10.1017/s0031182000060303
[19]  Schneider P, Bousema JT, Gouagna LC, Otieno S, van de Vegte-Bolmer M, Omar SA, et al. Submicroscopic Plasmodium falciparum gametocyte densities frequently result in mosquito infection. Am J Trop Med Hyg. 2007;76(3): 470–4. pmid:17360869
[20]  Solomon Islands Government (SIG). 2009. Volume I Report on 2009 Population And HousingCensus: Basic Tables and Census Description. Honiara, Solomon Islands. .
[21]  Branch O, Casapia WM, Gamboa DV, Hernandez JN, Alava FF, Roncal N, et al. Clustered local transmission and asymptomatic Plasmodium falciparum and Plasmodium vivax malaria infections in a recently emerged, hypoendemic Peruvian Amazon community. Malar J. 2005 Dec;4(6):27.
[22]  Wampfler R, Mwingira F, Javati S, Robinson L, Betuela I, Siba P, et al. Strategies for detection of Plasmodium species gametocytes. PLoS One. 2013 27;8(9):e76316. doi: 10.1371/journal.pone.0076316. pmid:24312682
[23]  Irenge LM, Robert A, Gala JL. Quantitative assessment of human beta-globin gene expression in vitro by TaqMan real-time reverse transcription-PCR: comparison with competitive reverse transcription-PCR and application to mutations or deletions in noncoding regions. Clin Chem. 2005;51(12): 2395–6. pmid:16306108 doi: 10.1373/clinchem.2005.056630
[24]  Koepfli C, Robinson LJ, Rarau P, Salib M, Sambale N, Wampfler R, et al. Blood-stage parasitaemia and age determine Plasmodium falciparum and P. vivax gametocytaemia in Papua New Guinea. PLoS One. 2015: in press.
[25]  Rosanas-Urgell A, Mueller D, Betuela I, Barnadas C, Iga J, Zimmerman PA, et al. Comparison of diagnostic methods for the detection and quantification of the four sympatric Plasmodium species in field samples from Papua New Guinea. Malar J. 201014;9: 361. English. doi: 10.1186/1475-2875-9-361. pmid:21156052
[26]  Falk N, Maire N, Sama W, Owusu-Agyei S, Smith T, Beck HP, et al. Comparison of PCR-RFLP and Genescan-based genotyping for analyzing infection dynamics of Plasmodium falciparum. Am J Trop Med Hyg. 2006; 74(6): 944–50. pmid:16760501
[27]  Koepfli C, Ross A, Kiniboro B, Smith TA, Zimmerman PA, Siba P, et al. Multiplicity and diversity of Plasmodium vivax infections in a highly endemic region in Papua New Guinea. PLoS Negl Trop Dis. 2011;5(12):e1424. doi: 10.1371/journal.pntd.0001424. pmid:22206027
[28]  Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)-a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2): 377–81. doi: 10.1016/j.jbi.2008.08.010. pmid:18929686
[29]  Mueller I, Kaiok J, Reeder JC, Cortes A. The population structure of Plasmodium falciparum and Plasmodium vivax during an epidemic of malaria in the Eastern Highlands of Papua New Guinea. Am J Trop Med Hyg. 2002 Nov;67(5): 459–64. pmid:12479544
[30]  Ballif M, Hii J, Marfurt J, Crameri A, Fafale A, Felger I, et al. Monitoring of malaria parasite resistance to chloroquine and sulphadoxine-pyrimethamine in the Solomon Islands by DNA microarray technology. Malar J. 2010;9:270. doi: 10.1186/1475-2875-9-270. pmid:20925934
[31]  Sakihama N, Ohmae H, Bakote'e B, Kawabata M, Hirayama K, Tanabe K. Limited allelic diversity of Plasmodium falciparum merozoite surface protein 1 gene from populations in the Solomon Islands. Am J Trop Med Hyg. 2006 Jan;74(1):31–40. pmid:16407343
[32]  Oliveira-Ferreira J, Lacerda MV, Brasil P, Ladislau JL, Tauil PL, Daniel-Ribeiro CT. Malaria in Brazil: an overview. Malar J. 2010 Apr 30;9: 115. doi: 10.1186/1475-2875-9-115. pmid:20433744
[33]  Putaporntip C, Hongsrimuang T, Seethamchai S, Kobasa T, Limkittikul K, Cui L, et al. Differential prevalence of Plasmodium infections and cryptic Plasmodium knowlesi malaria in humans in Thailand. J Infect Dis. 2009 Apr 15;199(8):1143–50. doi: 10.1086/597414. pmid:19284284
[34]  Katsuragawa TH, Gil LH, Tada MS, de Almeida e Silva A, Costa JD, Araujo Mda S, et al. The dynamics of transmission and spatial distribution of malaria in riverside areas of Porto Velho, Rondonia, in the Amazon region of Brazil. Plos One. 2010 Feb 16;5(2):e9245. doi: 10.1371/journal.pone.0009245. pmid:20169070
[35]  Pinto J, Sousa CA, Gil V, Ferreira C, Goncalves L, Lopes D, et al. Malaria in Sao Tome and Principe: parasite prevalences and vector densities. Acta Trop. 2000 Sep 18;76(2):185–93. pmid:10936578 doi: 10.1016/s0001-706x(00)00100-5
[36]  Suarez-Mutis MC, Coura JR. [Changes in the epidemiological pattern of malaria in a rural area of the middle Rio Negro, Brazilian Amazon: a retrospective analysis]. Cadernos de saude publica. 2007 Apr;23(4):795–804. Mudancas no padrao epidemiologico da malaria em area rural do medio Rio Negro, Amazonia brasileira: analise retrospectiva. Portuguese. pmid:17435877 doi: 10.1590/s0102-311x2007000400007
[37]  de AWGWM, Abeyasinghe RR, Premawansa S, Fernando SD. Usefulness of polymerase chain reaction to supplement field microscopy in a pre-selected population with a high probability of malaria infections. Am J Trop Med Hyg. 2011 Jul;85(1):6–11. doi: 10.4269/ajtmh.2011.10-0337. pmid:21734117
[38]  Rodulfo H, de Donato M, Quijada I, Pena A. High prevalence of malaria infection in Amazonas State, Venezuela. Rev Inst Med Trop Sao Paulo. 2007 Mar-Apr;49(2):79–85. pmid:17505663 doi: 10.1590/s0036-46652007000200003
[39]  Bugoro H, Hii JL, Butafa C, Iro'ofa C, Apairamo A, Cooper RD, et al. The bionomics of the malaria vector Anopheles farauti in Northern Guadalcanal, Solomon Islands: issues for successful vector control. Malar J. 2014;13:56. doi: 10.1186/1475-2875-13-56. pmid:24528850
[40]  Mueller I, Galinski MR, Tsuboi T, Arevalo-Herrera M, Collins WE, King CL. Natural acquisition of immunity to Plasmodium vivax: epidemiological observations and potential targets. Adv Parasitol. 2013;81:77–131. doi: 10.1016/B978-0-12-407826-0.00003-5. pmid:23384622
[41]  Bousema T, Drakeley C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin Microbiol Rev. 2011 Apr;24(2):377–410. doi: 10.1128/CMR.00051-10. pmid:21482730
[42]  Coleman RE, Kumpitak C, Ponlawat A, Maneechai N, Phunkitchar V, Rachapaew N, et al. Infectivity of asymptomatic Plasmodium-infected human populations to Anopheles dirus mosquitoes in western Thailand. J Med Entomol. 2004 Mar;41(2):201–8. pmid:15061279 doi: 10.1603/0022-2585-41.2.201
[43]  Sattabongkot J, Maneechai N, Phunkitchar V, Eikarat N, Khuntirat B, Sirichaisinthop J, et al. Comparison of artificial membrane feeding with direct skin feeding to estimate the infectiousness of Plasmodium vivax gametocyte carriers to mosquitoes. Am J Trop Med Hyg. 2003 Nov;69(5):529–35. pmid:14695091
[44]  Gamagemendis AC, Rajakaruna J, Carter R, Mendis KN. Infectious Reservoir of Plasmodium vivax and Plasmodium falciparum Malaria in an Endemic Region of Sri-Lanka. Am J Trop Med Hyg. 1991 Oct;45(4):479–87. pmid:1951856
[45]  Bharti AR, Chuquiyauri R, Brouwer KC, Stancil J, Lin J, Llanos-Cuentas A, et al. Experimental infection of the neotropical malaria vector Anopheles darlingi by human patient-derived Plasmodium vivax in the Peruvian Amazon. Am J Trop Med Hyg. 2006 Oct;75(4):610–6. pmid:17038681
[46]  Rogawski ET, Congpuong K, Sudathip P, Satimai W, Sug-aram R, Aruncharus S, et al. Active case detection with pooled real-time PCR to eliminate malaria in Trat province, Thailand. Am J Trop Med Hyg. 2012 May;86(5):789–91. doi: 10.4269/ajtmh.2012.11-0617. pmid:22556075
[47]  Littrell M, Sow GD, Ngom A, Ba M, Mboup BM, Dieye Y, et al. Case investigation and reactive case detection for malaria elimination in northern Senegal. Malar J. 2013;12:331. doi: 10.1186/1475-2875-12-331. pmid:24044506
[48]  Sturrock HJ, Novotny JM, Kunene S, Dlamini S, Zulu Z, Cohen JM, et al. Reactive case detection for malaria elimination: real-life experience from an ongoing program in Swaziland. PLoS One. 2013;8(5):e63830. doi: 10.1371/journal.pone.0063830. pmid:23700437
[49]  Kaneko A. A community-directed strategy for sustainable malaria elimination on islands: short-term MDA integrated with ITNs and robust surveillance. Acta Trop. 2010 Jun;114(3):177–83. doi: 10.1016/j.actatropica.2010.01.012. pmid:20132788
[50]  UCSF GHG. Review of Mass Drug Administration and Primaquine Use, prepared for the Bill and Melinda Gates Foundation. 2014. CA, U.S.A: University of California San Francisco. .
[51]  Kelly GC, Hale E, Donald W, Batarii W, Bugoro H, Nausien J, et al. A high-resolution geospatial surveillance-response system for malaria elimination in Solomon Islands and Vanuatu. Malar J. 2013;12:108. doi: 10.1186/1475-2875-12-108. pmid:23514410
[52]  Shanks GD. Control and elimination of Plasmodium vivax. Adv Parasitol. 2012;80:301–41. doi: 10.1016/B978-0-12-397900-1.00006-2. pmid:23199491
[53]  Hsiang MS, Hwang J, Tao AR, Liu Y, Bennett A, Shanks GD, et al. Mass drug administration for the control and elimination of Plasmodium vivax malaria: an ecological study from Jiangsu province, China. Malar J. 2013;12:383. doi: 10.1186/1475-2875-12-383. pmid:24175930

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133