全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Biodistribution and Toxicity Studies of PRINT Hydrogel Nanoparticles in Mosquito Larvae and Cells

DOI: 10.1371/journal.pntd.0003735

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mosquito-borne diseases continue to remain major threats to human and animal health and impediments to socioeconomic development. Increasing mosquito resistance to chemical insecticides is a great public health concern, and new strategies/technologies are necessary to develop the next-generation of vector control tools. We propose to develop a novel method for mosquito control that employs nanoparticles (NPs) as a platform for delivery of mosquitocidal dsRNA molecules to silence mosquito genes and cause vector lethality. Identifying optimal NP chemistry and morphology is imperative for efficient mosquitocide delivery. Toward this end, fluorescently labeled polyethylene glycol NPs of specific sizes, shapes (80 nm x 320 nm, 80 nm x 5000 nm, 200 nm x 200 nm, and 1000 nm x 1000 nm) and charges (negative and positive) were fabricated by Particle Replication in Non-Wetting Templates (PRINT) technology. Biodistribution, persistence, and toxicity of PRINT NPs were evaluated in vitro in mosquito cell culture and in vivo in Anopheles gambiae larvae following parenteral and oral challenge. Following parenteral challenge, the biodistribution of the positively and negatively charged NPs of each size and shape was similar; intense fluorescence was observed in thoracic and abdominal regions of the larval body. Positively charged NPs were more associated with the gastric caeca in the gastrointestinal tract. Negatively charged NPs persisted through metamorphosis and were observed in head, body and ovaries of adults. Following oral challenge, NPs were detected in the larval mid- and hindgut. Positively charged NPs were more efficiently internalized in vitro than negatively charged NPs. Positively charged NPs trafficked to the cytosol, but negatively charged NPs co-localized with lysosomes. Following in vitro and in vivo challenge, none of the NPs tested induced any cytotoxic effects.

References

[1]  Gubler DJ (2009) Vector-borne diseases. Rev Sci Tech 28: 583–588. pmid:20128467
[2]  WHO (2013) World Malaria Report.
[3]  Hemingway J (2014) The role of vector control in stopping the transmission of malaria: threats and opportunities. Philos Trans R Soc Lond B Biol Sci 369: 20130431. doi: 10.1098/rstb.2013.0431. pmid:24821917
[4]  Hemingway J, Beaty BJ, Rowland M, Scott TW, Sharp BL (2006) The Innovative Vector Control Consortium: improved control of mosquito-borne diseases. Trends Parasitol 22: 308–312. pmid:16713358 doi: 10.1016/j.pt.2006.05.003
[5]  Price DR, Gatehouse JA (2008) RNAi-mediated crop protection against insects. Trends Biotechnol 26: 393–400. doi: 10.1016/j.tibtech.2008.04.004. pmid:18501983
[6]  Huvenne H, Smagghe G (2010) Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol 56: 227–235. doi: 10.1016/j.jinsphys.2009.10.004. pmid:19837076
[7]  Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, et al. (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25: 1322–1326. pmid:17982443 doi: 10.1038/nbt1359
[8]  Scott JG, Michel K, Bartholomay LC, Siegfried BD, Hunter WB, Smagghe G, et al. (2013) Towards the elements of successful insect RNAi. J Insect Physiol 59: 1212–1221. doi: 10.1016/j.jinsphys.2013.08.014. pmid:24041495
[9]  Whangbo JS, Hunter CP (2008) Environmental RNA interference. Trends Genet 24: 297–305. doi: 10.1016/j.tig.2008.03.007. pmid:18450316
[10]  Guo P, Haque F, Hallahan B, Reif R, Li H (2012) Uniqueness, advantages, challenges, solutions, and perspectives in therapeutics applying RNA nanotechnology. Nucleic Acid Ther 22: 226–245. doi: 10.1089/nat.2012.0350. pmid:22913595
[11]  Garbutt JS, Belles X, Richards EH, Reynolds SE (2013) Persistence of double-stranded RNA in insect hemolymph as a potential determiner of RNA interference success: evidence from Manduca sexta and Blattella germanica. J Insect Physiol 59: 171–178. doi: 10.1016/j.jinsphys.2012.05.013. pmid:22664137
[12]  Zhang X, Zhang J, Zhu KY (2010) Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol Biol 19: 683–693. doi: 10.1111/j.1365-2583.2010.01029.x. pmid:20629775
[13]  Mysore K, Flannery EM, Tomchaney M, Severson DW, Duman-Scheel M (2013) Disruption of Aedes aegypti olfactory system development through chitosan/siRNA nanoparticle targeting of semaphorin-1a. PLoS Negl Trop Dis 7: e2215. doi: 10.1371/journal.pntd.0002215. pmid:23696908
[14]  Yu YH, Kim E, Park DE, Shim G, Lee S, Kim YB, et al. (2012) Cationic solid lipid nanoparticles for co-delivery of paclitaxel and siRNA. Eur J Pharm Biopharm 80: 268–273. doi: 10.1016/j.ejpb.2011.11.002. pmid:22108492
[15]  Perez SE, Gandola Y, Carlucci AM, Gonzalez L, Turyn D, Bregni C (2012) Formulation strategies, characterization, and in Vitro evaluation of lecithin-based nanoparticles for siRNA delivery. J Drug Deliv 2012: 986265. doi: 10.1155/2012/986265. pmid:22570790
[16]  Phanse Y, Carrillo-Conde BR, Ramer-Tait AE, Broderick S, Kong CS, Rajan K, et al. (2014) A systems approach to designing next generation vaccines: combining alpha-galactose modified antigens with nanoparticle platforms. Sci Rep 4: 3775. doi: 10.1038/srep03775. pmid:24441019
[17]  Oxborough RM, Kitau J, Jones R, Feston E, Matowo J, Mosha FW, et al. (2014) Long-lasting control of Anopheles arabiensis by a single spray application of micro-encapsulated pirimiphos-methyl (Actellic(R) 300 CS). Malar J 13: 37. doi: 10.1186/1475-2875-13-37. pmid:24476070
[18]  Wang J, Byrne JD, Napier ME, DeSimone JM (2011) More effective nanomedicines through particle design. Small 7: 1919–1931. doi: 10.1002/smll.201100442. pmid:21695781
[19]  Perry JL, Herlihy KP, Napier ME, Desimone JM (2011) PRINT: a novel platform toward shape and size specific nanoparticle theranostics. Acc Chem Res 44: 990–998. doi: 10.1021/ar2000315. pmid:21809808
[20]  Perry JL, Reuter KG, Kai MP, Herlihy KP, Jones SW, Luft JC, et al. (2012) PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Letters 12: 5304–5310. doi: 10.1021/nl302638g. pmid:22920324
[21]  Galloway AL, Murphy A, DeSimone JM, Di J, Herrmann JP, Hunter ME, et al. (2013) Development of a nanoparticle-based influenza vaccine using the PRINT technology. Nanomedicine 9: 523–531. doi: 10.1016/j.nano.2012.11.001. pmid:23178283
[22]  Xu J, Wong DH, Byrne JD, Chen K, Bowerman C, DeSimone JM (2013) Future of the particle replication in nonwetting templates (PRINT) technology. Angew Chem Int Ed Engl 52: 6580–6589. doi: 10.1002/anie.201209145. pmid:23670869
[23]  Xu J, Luft JC, Yi X, Tian S, Owens G, Wang J, et al. (2013) RNA replicon delivery via lipid-complexed PRINT protein particles. Mol Pharm 10: 3366–3374. doi: 10.1021/mp400190z. pmid:23924216
[24]  Dunn SS, Tian SM, Blake S, Wang J, Galloway AL, Murphy A, et al. (2012) Reductively responsive siRNA-conjugated hydrogel nanoparticles for gene silencing. Journal of the American Chemical Society 134: 7423–7430. doi: 10.1021/ja300174v. pmid:22475061
[25]  Hasan W, Chu K, Gullapalli A, Dunn SS, Enlow EM, Luft JC, et al. (2012) Delivery of multiple siRNAs using lipid-coated PLGA nanoparticles for treatment of prostate cancer. Nano Letters 12: 287–292. doi: 10.1021/nl2035354. pmid:22165988
[26]  Chu KS, Finniss MC, Schorzman AN, Kuijer JL, Luft JC, Bowerman CJ, et al. (2014) Particle replication in nonwetting templates nanoparticles with tumor selective alkyl silyl ether docetaxel prodrug reduces toxicity. Nano Letters.
[27]  Chu KS, Hasan W, Rawal S, Walsh MD, Enlow EM, Luft JC, et al. (2013) Plasma, tumor and tissue pharmacokinetics of Docetaxel delivered via nanoparticles of different sizes and shapes in mice bearing SKOV-3 human ovarian carcinoma xenograft. Nanomedicine-Nanotechnology Biology and Medicine 9: 686–693. doi: 10.1016/j.nano.2012.11.008. pmid:23219874
[28]  Chu KS, Schorzman AN, Finniss MC, Bowerman CJ, Peng L, Luft JC, et al. (2013) Nanoparticle drug loading as a design parameter to improve docetaxel pharmacokinetics and efficacy. Biomaterials 34: 8424–8429. doi: 10.1016/j.biomaterials.2013.07.038. pmid:23899444
[29]  Parrott MC, Finniss M, Luft JC, Pandya A, Gullapalli A, Napier ME, et al. (2012) Incorporation and controlled release of silyl ether prodrugs from PRINT nanoparticles. Journal of the American Chemical Society 134: 7978–7982. doi: 10.1021/ja301710z. pmid:22545784
[30]  Guzmán MTI J., Riande E., Compa? V., Andrio A. (1997) Synthesis and polymerization of acrylic monomers with hydrophilic long side groups. Oxygen transport through water swollen membranes prepared from these polymers. Polymer 38: 5227–5232. doi: 10.1016/s0032-3861(97)00039-6
[31]  Merkel TJ, Herlihy KP, Nunes J, Orgel RM, Rolland JP, DeSimone JM (2010) Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles. Langmuir 26: 13086–13096. doi: 10.1021/la903890h. pmid:20000620
[32]  Phanse Y, Ramer-Tait AE, Friend SL, Carrillo-Conde B, Lueth P, Oster CJ, et al. (2012) Analyzing cellular internalization of nanoparticles and bacteria by multi-spectral imaging flow cytometry. J Vis Exp: e3884.
[33]  Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6: 12–21. doi: 10.1002/smll.200901158. pmid:19844908
[34]  Paquette CCH, Phanse Y, Perry J, Sachez-Vargas I, Airs PM, Dunphy BM, et al. (accepted 2015) Biodistribution and trafficking of hydrogel nanoparticles in adult Anopheles gambiae mosquitoes. PLoS Neglected Tropical Diseases.
[35]  Glenn JD, King JG, Hillyer JF (2010) Structural mechanics of the mosquito heart and its function in bidirectional hemolymph transport. J Exp Biol 213: 541–550. doi: 10.1242/jeb.035014. pmid:20118304
[36]  Phanse Y, Carrillo-Conde BR, Ramer-Tait AE, Roychoudhury R, Pohl NL, Narasimhan B, et al. (2013) Functionalization of polyanhydride microparticles with di-mannose influences uptake by and intracellular fate within dendritic cells. Acta Biomater 9: 8902–8909. doi: 10.1016/j.actbio.2013.06.024. pmid:23796408
[37]  Foged C, Brodin B, Frokjaer S, Sundblad A (2005) Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm 298: 315–322. pmid:15961266 doi: 10.1016/j.ijpharm.2005.03.035
[38]  Wischke C, Borchert HH, Zimmermann J, Siebenbrodt I, Lorenzen DR (2006) Stable cationic microparticles for enhanced model antigen delivery to dendritic cells. J Control Release 114: 359–368. pmid:16889866 doi: 10.1016/j.jconrel.2006.06.020
[39]  Yu N, Christiaens O, Liu J, Niu J, Cappelle K, Caccia S, et al. (2013) Delivery of dsRNA for RNAi in insects: an overview and future directions. Insect Sci 20: 4–14. doi: 10.1111/j.1744-7917.2012.01534.x. pmid:23955821
[40]  Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, et al. (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A 105: 11613–11618. doi: 10.1073/pnas.0801763105. pmid:18697944
[41]  Wang J, Tian S, Petros RA, Napier ME, DeSimone JM (2010) The Complex role of multivalency in nanoparticles targeting the transferrin receptor for cancer therapies. Journal of the American Chemical Society 132: 11306–11313. doi: 10.1021/ja1043177. pmid:20698697
[42]  Roberts RA, Shen T, Allen IC, Hasan W, DeSimone JM, Ting JPY (2013) Analysis of the murine immune response to pulmonary delivery of precisely fabricated nano- and microscale particles. PloS One 8. doi: 10.1371/journal.pone.0062115

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133