Background Therapeutic response in infectious disease involves host as well as microbial determinants. Because the immune and inflammatory response to Leishmania (Viannia) species defines the outcome of infection and efficacy of treatment, immunomodulation is considered a promising therapeutic strategy. However, since Leishmania infection and antileishmanial drugs can themselves modulate drug transport, metabolism and/or immune responses, immunotherapeutic approaches require integrated assessment of host and parasite responses. Methodology To achieve an integrated assessment of current and innovative therapeutic strategies, we determined host and parasite responses to miltefosine and meglumine antimoniate alone and in combination with pentoxifylline or CpG 2006 in peripheral blood mononuclear cells (PBMCs) of cutaneous leishmaniasis patients. Parasite survival and secretion of TNF-α, IFN-γ, IL-10 and IL-13 were evaluated concomitantly in PBMCs infected with Luc-L. (V.) panamensis exposed to meglumine antimoniate (4, 8, 16, 32 and 64 μg SbV/mL) or miltefosine (2, 4, 8, 16 and 32 μM HePC). Concentrations of 4 μM of miltefosine and 8 μg SbV/mL were selected for evaluation in combination with immunomodulators based on the high but partial reduction of parasite burden by these antileishmanial concentrations without affecting cytokine secretion of infected PBMCs. Intracellular parasite survival was determined by luminometry and cytokine secretion measured by ELISA and multiplex assays. Principal Findings Anti- and pro-inflammatory cytokines characteristic of L. (V.) panamensis infection were evaluable concomitantly with viability of Leishmania within monocyte-derived macrophages present in PBMC cultures. Both antileishmanial drugs reduced the parasite load of macrophages; miltefosine also suppressed IL-10 and IL-13 secretion in a dose dependent manner. Pentoxifylline did not affect parasite survival or alter antileishmanial effects of miltefosine or meglumine antimoniate. However, pentoxifylline diminished secretion of TNF-α, IFN-γ and IL-13, cytokines associated with the outcome of infection by species of the Viannia subgenus. Exposure to CpG diminished the leishmanicidal effect of meglumine antimoniate, but not miltefosine, and significantly reduced secretion of IL -10, alone and in combination with either antileishmanial drug. IL-13 increased in response to CpG plus miltefosine. Conclusions and Significance Human PBMCs allow integrated ex vivo assessment of antileishmanial treatments, providing information on host and parasite determinants of therapeutic
References
[1]
Elting LS, Rubenstein EB, Rolston KVI, Bodey GP. Outcomes of Bacteremia in Patients with Cancer and Neutropenia: Observations from Two Decades of Epidemiological and Clinical Trials. Clinical Infectious Diseases1997. p. 247–59.
[2]
Flateau C, Le Loup G, Pialoux G. Consequences of HIV infection on malaria and therapeutic implications: a systematic review. Lancet Infect Dis. 2011;11(7):541–56. Epub 2011/06/28. doi: 10.1016/s1473-3099(11)70031-7 pmid:21700241.
[3]
Nelson CA, Zunt JR. Tuberculosis of the central nervous system in immunocompromised patients: HIV infection and solid organ transplant recipients. Clin Infect Dis. 2011;53(9):915–26. Epub 2011/10/01. doi: 10.1093/cid/cir508 pmid:21960714; PubMed Central PMCID: PMCPMC3218626.
[4]
Pirofski LA, Casadevall A. The damage-response framework of microbial pathogenesis and infectious diseases. Adv Exp Med Biol. 2008;635:135–46. Epub 2008/10/10. doi: 10.1007/978-0-387-09550-9_11 pmid:18841709.
[5]
Diaz YR, Rojas R, Valderrama L, Saravia NG. T-bet, GATA-3, and Foxp3 expression and Th1/Th2 cytokine production in the clinical outcome of human infection with Leishmania (Viannia) species. J Infect Dis. 2010;202(3):406–15. Epub 2010/06/30. doi: 10.1086/653829 pmid:20583921.
[6]
Carvalho LP, Passos S, Schriefer A, Carvalho EM. Protective and pathologic immune responses in human tegumentary leishmaniasis. Front Immunol. 2012;3:301. Epub 2012/10/13. doi: 10.3389/fimmu.2012.00301 pmid:23060880; PubMed Central PMCID: PMCPMC3463898.
[7]
Nylen S, Eidsmo L. Tissue damage and immunity in cutaneous leishmaniasis. Parasite Immunol. 2012;34(12):551–61. Epub 2012/09/27. doi: 10.1111/pim.12007 pmid:23009296.
[8]
Maurer-Cecchini A, Decuypere S, Chappuis F, Alexandrenne C, De Doncker S, Boelaert M, et al. Immunological determinants of clinical outcome in Peruvian patients with tegumentary leishmaniasis treated with pentavalent antimonials. Infect Immun. 2009;77(5):2022–9. Epub 2009/02/25. doi: 10.1128/iai.01513-08 pmid:19237520; PubMed Central PMCID: PMCPMC2681755.
[9]
Ramirez C, Diaz-Toro Y, Tellez J, Castilho TM, Rojas R, Ettinger NA, et al. Human macrophage response to L. (Viannia) panamensis: microarray evidence for an early inflammatory response. PLoS Negl Trop Dis. 2012;6(10):e1866. Epub 2012/11/13. doi: 10.1371/journal.pntd.0001866 pmid:23145196; PubMed Central PMCID: PMCPMC3493378.
[10]
Shio MT, Hassani K, Isnard A, Ralph B, Contreras I, Gomez MA, et al. Host cell signalling and leishmania mechanisms of evasion. J Trop Med. 2012;2012:819512. Epub 2011/12/02. doi: 10.1155/2012/819512 pmid:22131998; PubMed Central PMCID: PMCPMC3216306.
[11]
Mookerjee Basu J, Mookerjee A, Banerjee R, Saha M, Singh S, Naskar K, et al. Inhibition of ABC transporters abolishes antimony resistance in Leishmania Infection. Antimicrob Agents Chemother. 2008;52(3):1080–93. Epub 2007/12/07. doi: 10.1128/aac.01196-07. pmid:18056276; PubMed Central PMCID: PMCPMC2258502.
[12]
Marques-da-Silva C, Chaves MM, Rodrigues JC, Corte-Real S, Coutinho-Silva R, Persechini PM. Differential modulation of ATP-induced P2X7-associated permeabilities to cations and anions of macrophages by infection with Leishmania amazonensis. PLoS One. 2011;6(9):e25356. Epub 2011/10/04. doi: 10.1371/journal.pone.0025356 pmid:21966508; PubMed Central PMCID: PMCPMC3179508.
[13]
Gomez MA, Navas A, Marquez R, Rojas LJ, Vargas DA, Blanco VM, et al. Leishmania panamensis infection and antimonial drugs modulate expression of macrophage drug transporters and metabolizing enzymes: impact on intracellular parasite survival. J Antimicrob Chemother. 2014;69(1):139–49. Epub 2013/08/27. doi: 10.1093/jac/dkt334 pmid:23975742; PubMed Central PMCID: PMCPMC3861331.
[14]
Shio MT, Olivier M. Editorial: Leishmania survival mechanisms: the role of host phosphatases. J Leukoc Biol. 2010;88(1):1–3. Epub 2010/07/02. doi: 10.1189/jlb.0210088 pmid:20591873.
[15]
Franco LH, Beverley SM, Zamboni DS. Innate immune activation and subversion of Mammalian functions by leishmania lipophosphoglycan. J Parasitol Res. 2012;2012:165126. Epub 2012/04/24. doi: 10.1155/2012/165126 pmid:22523640; PubMed Central PMCID: PMCPMC3317186.
[16]
Amarante MK, Watanabe MA, Conchon-Costa I, Fiori LL, Oda JM, Bufalo MC, et al. The effect of propolis on CCL5 and IFN-gamma expression by peripheral blood mononuclear cells from leishmaniasis patients. J Pharm Pharmacol. 2012;64(1):154–60. Epub 2011/12/14. doi: 10.1111/j.2042-7158.2011.01385.x pmid:22150683.
[17]
Rodrigues RF, Charret KS, Campos MC, Amaral V, Echevarria A, Dos Reis C, et al. The in vivo activity of 1,3,4-thiadiazolium-2-aminide compounds in the treatment of cutaneous and visceral leishmaniasis. J Antimicrob Chemother. 2012;67(1):182–90. Epub 2011/10/12. doi: 10.1093/jac/dkr409 pmid:21987238.
[18]
Mendez S, Traslavina R, Hinchman M, Huang L, Green P, Cynamon MH, et al. The antituberculosis drug pyrazinamide affects the course of cutaneous leishmaniasis in vivo and increases activation of macrophages and dendritic cells. Antimicrob Agents Chemother. 2009;53(12):5114–21. Epub 2009/09/23. doi: 10.1128/aac.01146-09 pmid:19770283; PubMed Central PMCID: PMCPMC2786368.
[19]
Han J, Thompson P, Beutler B. Dexamethasone and pentoxifylline inhibit endotoxin-induced cachectin/tumor necrosis factor synthesis at separate points in the signaling pathway. J Exp Med. 1990;172(1):391–4. Epub 1990/07/01. pmid:2358784; PubMed Central PMCID: PMCPMC2188134. doi: 10.1084/jem.172.1.391
[20]
Machado PRL, Lessa H, Lessa M, Guimar?es LH, Bang H, Ho JL, et al. Oral Pentoxifylline Combined with Pentavalent Antimony: A Randomized Trial for Mucosal Leishmaniasis. Clinical Infectious Diseases. 2007;44(6):788–93. doi: 10.1086/511643. pmid:17304449
[21]
Brito G, Dourado M, Polari L, Celestino D, Carvalho LP, Queiroz A, et al. Clinical and immunological outcome in cutaneous leishmaniasis patients treated with pentoxifylline. Am J Trop Med Hyg. 2014;90(4):617–20. Epub 2014/02/26. doi: 10.4269/ajtmh.12-0729 pmid:24567316; PubMed Central PMCID: PMCPMC3973503.
[22]
Wingender G, Garbi N, Schumak B, Jungerkes F, Endl E, von Bubnoff D, et al. Systemic application of CpG-rich DNA suppresses adaptive T cell immunity via induction of IDO. Eur J Immunol. 2006;36(1):12–20. Epub 2005/12/03. doi: 10.1002/eji.200535602 pmid:16323249.
[23]
Waibler Z, Anzaghe M, Konur A, Akira S, Muller W, Kalinke U. Excessive CpG 1668 stimulation triggers IL-10 production by cDC that inhibits IFN-alpha responses by pDC. Eur J Immunol. 2008;38(11):3127–37. Epub 2008/11/11. doi: 10.1002/eji.200838184 pmid:18991289.
[24]
Vollmer J, Krieg AM. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev. 2009;61(3):195–204. Epub 2009/02/13. doi: 10.1016/j.addr.2008.12.008 pmid:19211030.
[25]
Pourgholaminejad A, Jamali A, Samadi-Foroushani M, Amari A, Mirzaei R, Ansaripour B, et al. Reduced efficacy of multiple doses of CpG-matured dendritic cell tumor vaccine in an experimental model. Cell Immunol. 2011;271(2):360–4. Epub 2011/09/06. doi: 10.1016/j.cellimm.2011.08.001 pmid:21889129.
[26]
Jahrsdorfer B, Weiner GJ. CpG oligodeoxynucleotides as immunotherapy in cancer. Update Cancer Ther. 2008;3(1):27–32. Epub 2009/03/04. doi: 10.1016/j.uct.2007.11.003 pmid:19255607; PubMed Central PMCID: PMCPMC2390897.
[27]
Fonseca DE, Kline JN. Use of CpG oligonucleotides in treatment of asthma and allergic disease. Adv Drug Deliv Rev. 2009;61(3):256–62. Epub 2009/01/27. doi: 10.1016/j.addr.2008.12.007 pmid:19167442.
[28]
Shivahare R, Vishwakarma P, Parmar N, Yadav PK, Haq W, Srivastava M, et al. Combination of liposomal CpG oligodeoxynucleotide 2006 and miltefosine induces strong cell-mediated immunity during experimental visceral leishmaniasis. PLoS One. 2014;9(4):e94596. Epub 2014/04/16. doi: 10.1371/journal.pone.0094596 pmid:24732039; PubMed Central PMCID: PMCPMC3986403.
[29]
Rodriguez-Pinto D, Saravia NG, McMahon-Pratt D. CD4 T cell activation by B cells in human Leishmania (Viannia) infection. BMC Infect Dis. 2014;14:108. Epub 2014/02/27. doi: 10.1186/1471-2334-14-108 pmid:24568275; PubMed Central PMCID: PMCPMC3937821.
[30]
Sambor A, Garcia A, Berrong M, Pickeral J, Brown S, Rountree W, et al. Establishment and maintenance of a PBMC repository for functional cellular studies in support of clinical vaccine trials. J Immunol Methods. 2014;409:107–16. Epub 2014/05/03. doi: 10.1016/j.jim.2014.04.005 pmid:24787274; PubMed Central PMCID: PMCPMC4152919.
[31]
Bodley AL, McGarry MW, Shapiro TA. Drug cytotoxicity assay for African trypanosomes and Leishmania species. J Infect Dis. 1995;172(4):1157–9. Epub 1995/10/01. pmid:7561203. doi: 10.1093/infdis/172.4.1157
[32]
Pedersen G, Andresen L, Matthiessen MW, Rask-Madsen J, Brynskov J. Expression of Toll-like receptor 9 and response to bacterial CpG oligodeoxynucleotides in human intestinal epithelium. Clin Exp Immunol. 2005;141(2):298–306. Epub 2005/07/06. doi: 10.1111/j.1365-2249.2005.02848.x pmid:15996194; PubMed Central PMCID: PMCPMC1809430.
[33]
Landrigan A, Yiu G, Agarwal K, Utz PJ. Therapeutic Toll-like receptor agonists directly influence mouse and human T cell lymphoma cell viability and cytokine secretion. Leuk Lymphoma. 2012;53(1):166–8. Epub 2011/07/26. doi: 10.3109/10428194.2011.606944 pmid:21780996; PubMed Central PMCID: PMCPMC3339659.
[34]
Romero IC, Saravia NG, Walker J. Selective action of fluoroquinolones against intracellular amastigotes of Leishmania (Viannia) panamensis in vitro. J Parasitol. 2005;91(6):1474–9. Epub 2006/03/17. doi: 10.1645/ge-3489.1 pmid:16539034.
[35]
Roy G, Dumas C, Sereno D, Wu Y, Singh AK, Tremblay MJ, et al. Episomal and stable expression of the luciferase reporter gene for quantifying Leishmania spp. infections in macrophages and in animal models. Mol Biochem Parasitol. 2000;110(2):195–206. Epub 2000/11/09. pmid:11071276. doi: 10.1016/s0166-6851(00)00270-x
[36]
Rojas R, Valderrama L, Valderrama M, Varona MX, Ouellette M, Saravia NG. Resistance to antimony and treatment failure in human Leishmania (Viannia) infection. J Infect Dis. 2006;193(10):1375–83. Epub 2006/04/19. doi: 10.1086/503371 pmid:16619185.
[37]
Boyum A. Isolation of lymphocytes, granulocytes and macrophages. Scand J Immunol. 1976;Suppl 5:9–15. Epub 1976/06/01. pmid:1052391. doi: 10.1111/j.1365-3083.1976.tb03851.x
[38]
Ashutosh , Gupta S, Ramesh , Sundar S, Goyal N. Use of Leishmania donovani field isolates expressing the luciferase reporter gene in in vitro drug screening. Antimicrob Agents Chemother. 2005;49(9):3776–83. Epub 2005/09/01. doi: 10.1128/aac.49.9.3776–3783.2005 pmid:16131481; PubMed Central PMCID: PMCPMC1195392.
[39]
Fernandez O, Diaz-Toro Y, Valderrama L, Ovalle C, Valderrama M, Castillo H, et al. Novel approach to in vitro drug susceptibility assessment of clinical strains of Leishmania spp. J Clin Microbiol. 2012;50(7):2207–11. Epub 2012/04/21. doi: 10.1128/jcm.00216-12 pmid:22518860; PubMed Central PMCID: PMCPMC3405580.
[40]
Bosque F, Saravia NG, Valderrama L, Milon G. Distinct innate and acquired immune responses to Leishmania in putative susceptible and resistant human populations endemically exposed to L. (Viannia) panamensis infection. Scand J Immunol. 2000;51(5):533–41. Epub 2000/05/03. pmid:10792848. doi: 10.1046/j.1365-3083.2000.00724.x
[41]
Osorio Y, Travi BL, Renslo AR, Peniche AG, Melby PC. Identification of small molecule lead compounds for visceral leishmaniasis using a novel ex vivo splenic explant model system. PLoS Negl Trop Dis. 2011;5(2):e962. Epub 2011/03/02. doi: 10.1371/journal.pntd.0000962 pmid:21358812; PubMed Central PMCID: PMCPMC3039689.
[42]
Brachelente C, Muller N, Doherr MG, Sattler U, Welle M. Cutaneous leishmaniasis in naturally infected dogs is associated with a T helper-2-biased immune response. Vet Pathol. 2005;42(2):166–75. Epub 2005/03/09. doi: 10.1354/vp.42-2-166 pmid:15753470.
[43]
Nelson KG, Bishop JV, Ryan RO, Titus R. Nanodisk-associated amphotericin B clears Leishmania major cutaneous infection in susceptible BALB/c mice. Antimicrob Agents Chemother. 2006;50(4):1238–44. Epub 2006/03/30. doi: 10.1128/aac.50.4.1238–1244.2006 pmid:16569834; PubMed Central PMCID: PMCPMC1426947.
[44]
Gebre-Hiwot A, Tadesse G, Croft SL, Frommel D. An in vitro model for screening antileishmanial drugs: the human leukaemia monocyte cell line, THP-1. Acta Trop. 1992;51(3–4):237–45. Epub 1992/08/01. pmid:1359751. doi: 10.1016/0001-706x(92)90042-v
[45]
Cruz A, Rainey PM, Herwaldt BL, Stagni G, Palacios R, Trujillo R, et al. Pharmacokinetics of Antimony in Children Treated for Leishmaniasis with Meglumine Antimoniate. Journal of Infectious Diseases. 2007;195(4):602–8. doi: 10.1086/510860. pmid:17230422
[46]
Dorlo TP, van Thiel PP, Huitema AD, Keizer RJ, de Vries HJ, Beijnen JH, et al. Pharmacokinetics of miltefosine in Old World cutaneous leishmaniasis patients. Antimicrob Agents Chemother. 2008;52(8):2855–60. Epub 2008/06/04. doi: 10.1128/aac.00014-08 pmid:18519729; PubMed Central PMCID: PMCPMC2493105.
[47]
Hochhuth CH, Vehmeyer K, Eibl H, Unger C. Hexadecylphosphocholine induces interferon-gamma secretion and expression of GM-CSF mRNA in human mononuclear cells. Cell Immunol. 1992;141(1):161–8. Epub 1992/04/15. pmid:1555249. doi: 10.1016/0008-8749(92)90135-c
[48]
van Blitterswijk WJ, Verheij M. Anticancer mechanisms and clinical application of alkylphospholipids. Biochim Biophys Acta. 2013;1831(3):663–74. Epub 2012/11/10. doi: 10.1016/j.bbalip.2012.10.008 pmid:23137567.
[49]
Garcia-Cordoba F, Ortuno FJ, Segovia M, Gonzalez Diaz G. Fatal visceral leishmaniasis, with massive bone-marrow infection, in an immunosuppressed but HIV-negative Spanish patient, after the initiation of treatment with meglumine antimoniate. Ann Trop Med Parasitol. 2005;99(2):125–30. Epub 2005/04/09. doi: 10.1179/136485905x19810 pmid:15814031.
[50]
Ritmeijer K, Dejenie A, Assefa Y, Hundie TB, Mesure J, Boots G, et al. A comparison of miltefosine and sodium stibogluconate for treatment of visceral leishmaniasis in an Ethiopian population with high prevalence of HIV infection. Clin Infect Dis. 2006;43(3):357–64. Epub 2006/06/29. doi: 10.1086/505217 pmid:16804852.
[51]
Tuon FF, Sabbaga Amato V, Floeter-Winter LM, de Andrade Zampieri R, Amato Neto V, Siqueira Franca FO, et al. Cutaneous leishmaniasis reactivation 2 years after treatment caused by systemic corticosteroids—first report. Int J Dermatol. 2007;46(6):628–30. Epub 2007/06/07. doi: 10.1111/j.1365-4632.2006.03096.x pmid:17550567.
[52]
Murray HW, Montelibano C, Peterson R, Sypek JP. Interleukin-12 Regulates the Response to Chemotherapy in Experimental Visceral Leishmaniasis. Journal of Infectious Diseases. 2000;182(5):1497–502. doi: 10.1086/315890. pmid:11023473
[53]
Escobar P, Yardley V, Croft SL. Activities of hexadecylphosphocholine (miltefosine), AmBisome, and sodium stibogluconate (Pentostam) against Leishmania donovani in immunodeficient scid mice. Antimicrob Agents Chemother. 2001;45(6):1872–5. Epub 2001/05/17. doi: 10.1128/aac.45.6.1872–1875.2001 pmid:11353640; PubMed Central PMCID: PMCPMC90560.
[54]
Muniz-Junqueira MI, de Paula-Coelho VN. Meglumine antimonate directly increases phagocytosis, superoxide anion and TNF-alpha production, but only via TNF-alpha it indirectly increases nitric oxide production by phagocytes of healthy individuals, in vitro. Int Immunopharmacol. 2008;8(12):1633–8. Epub 2008/08/12. doi: 10.1016/j.intimp.2008.07.011 pmid:18692597.
[55]
Fan K, Borden E, Yi T. Interferon-gamma is induced in human peripheral blood immune cells in vitro by sodium stibogluconate/interleukin-2 and mediates its antitumor activity in vivo. J Interferon Cytokine Res. 2009;29(8):451–60. Epub 2009/06/12. doi: 10.1089/jir.2008.0061 pmid:19514839; PubMed Central PMCID: PMCPMC2956636.
[56]
Wadhone P, Maiti M, Agarwal R, Kamat V, Martin S, Saha B. Miltefosine promotes IFN-gamma-dominated anti-leishmanial immune response. J Immunol. 2009;182(11):7146–54. Epub 2009/05/21. doi: 10.4049/jimmunol.0803859 pmid:19454711.
[57]
Mukhopadhyay D, Das NK, Roy S, Kundu S, Barbhuiya JN, Chatterjee M. Miltefosine effectively modulates the cytokine milieu in Indian post kala-azar dermal leishmaniasis. J Infect Dis. 2011;204(9):1427–36. Epub 2011/09/22. doi: 10.1093/infdis/jir551 pmid:21933878.
[58]
Mukherjee AK, Gupta G, Adhikari A, Majumder S, Kar Mahapatra S, Bhattacharyya Majumdar S, et al. Miltefosine triggers a strong proinflammatory cytokine response during visceral leishmaniasis: role of TLR4 and TLR9. Int Immunopharmacol. 2012;12(4):565–72. Epub 2012/03/01. doi: 10.1016/j.intimp.2012.02.002 pmid:22361489.
[59]
Salhi A, Rodrigues V Jr., Santoro F, Dessein H, Romano A, Castellano LR, et al. Immunological and genetic evidence for a crucial role of IL-10 in cutaneous lesions in humans infected with Leishmania braziliensis. J Immunol. 2008;180(9):6139–48. Epub 2008/04/22. pmid:18424735. doi: 10.4049/jimmunol.180.9.6139
[60]
Castilho TM, Goldsmith-Pestana K, Lozano C, Valderrama L, Saravia NG, McMahon-Pratt D. Murine model of chronic L. (Viannia) panamensis infection: Role of IL-13 in disease. European Journal of Immunology. 2010;40(10):2816–29. doi: 10.1002/eji.201040384. pmid:20827674
[61]
de Assis Souza M, de Castro MC, de Oliveira AP, de Almeida AF, de Almeida TM, Reis LC, et al. Cytokines and NO in American tegumentary leishmaniasis patients: profiles in active disease, after therapy and in self-healed individuals. Microb Pathog. 2013;57:27–32. Epub 2013/02/23. doi: 10.1016/j.micpath.2013.02.004 pmid:23428929.
[62]
Mookerjee Basu J, Mookerjee A, Sen P, Bhaumik S, Sen P, Banerjee S, et al. Sodium antimony gluconate induces generation of reactive oxygen species and nitric oxide via phosphoinositide 3-kinase and mitogen-activated protein kinase activation in Leishmania donovani-infected macrophages. Antimicrob Agents Chemother. 2006;50(5):1788–97. Epub 2006/04/28. doi: 10.1128/aac.50.5.1788–1797.2006 pmid:16641451; PubMed Central PMCID: PMCPMC1472228.
[63]
D'Hellencourt CL, Diaw L, Cornillet P, Guenounou M. Differential regulation of TNF alpha, IL-1 beta, IL-6, IL-8, TNF beta, and IL-10 by pentoxifylline. Int J Immunopharmacol. 1996;18(12):739–48. Epub 1996/12/01. pmid:9172017. doi: 10.1016/s0192-0561(97)85556-7
[64]
Gutierrez-Reyes G, Lopez-Ortal P, Sixtos S, Cruz S, Ramirez-Iglesias MT, Gutierrez-Ruiz MC, et al. Effect of pentoxifylline on levels of pro-inflammatory cytokines during chronic hepatitis C. Scand J Immunol. 2006;63(6):461–7. Epub 2006/06/13. doi: 10.1111/j.1365-3083.2006.001761.x pmid:16764700.
[65]
Ribeiro de Jesus A, Luna T, Pacheco de Almeida R, Machado PR, Carvalho EM. Pentoxifylline down modulate in vitro T cell responses and attenuate pathology in Leishmania and HTLV-I infections. Int Immunopharmacol. 2008;8(10):1344–53. Epub 2008/08/09. doi: 10.1016/j.intimp.2008.03.020 pmid:18687297.
[66]
Kim SJ, Kim JW, Kim YH, Lee SH, Yoon HK, Kim CH, et al. Effects of tranilast and pentoxifylline in a mouse model of chronic asthma using house dust mite antigen. J Asthma. 2009;46(9):884–94. Epub 2009/11/13. doi: 10.3109/02770900903089998 pmid:19905913.
[67]
Vollmer J, Rankin R, Hartmann H, Jurk M, Samulowitz U, Wader T, et al. Immunopharmacology of CpG oligodeoxynucleotides and ribavirin. Antimicrob Agents Chemother. 2004;48(6):2314–7. Epub 2004/05/25. doi: 10.1128/aac.48.6.2314–2317.2004 pmid:15155243; PubMed Central PMCID: PMCPMC415599.