Background Trachoma causes blindness through a conjunctival scarring process initiated by ocular Chlamydia trachomatis infection; however, the rates, drivers and pathophysiological determinants are poorly understood. We investigated progressive scarring and its relationship to conjunctival infection, inflammation and transcript levels of cytokines and fibrogenic factors. Methodology/Principal Findings We recruited two cohorts, one each in Ethiopia and Tanzania, of individuals with established trachomatous conjunctival scarring. They were followed six-monthly for two years, with clinical examinations and conjunctival swab sample collection. Progressive scarring cases were identified by comparing baseline and two-year photographs, and compared to individuals without progression. Samples were tested for C. trachomatis by PCR and transcript levels of S100A7, IL1B, IL13, IL17A, CXCL5, CTGF, SPARCL1, CEACAM5, MMP7, MMP9 and CD83 were estimated by quantitative RT-PCR. Progressive scarring was found in 135/585 (23.1%) of Ethiopian participants and 173/577 (30.0%) of Tanzanian participants. There was a strong relationship between progressive scarring and increasing inflammatory episodes (Ethiopia: OR 5.93, 95%CI 3.31–10.6, p<0.0001. Tanzania: OR 5.76, 95%CI 2.60–12.7, p<0.0001). No episodes of C. trachomatis infection were detected in the Ethiopian cohort and only 5 episodes in the Tanzanian cohort. Clinical inflammation, but not scarring progression, was associated with increased expression of S100A7, IL1B, IL17A, CXCL5, CTGF, CEACAM5, MMP7, CD83 and reduced SPARCL1. Conclusions/Significance Scarring progressed in the absence of detectable C. trachomatis, which raises uncertainty about the primary drivers of late-stage trachoma. Chronic conjunctival inflammation appears to be central and is associated with enriched expression of pro-inflammatory factors and altered expression of extracellular matrix regulators. Host determinants of scarring progression appear more complex and subtle than the features of inflammation. Overall this indicates a potential role for anti-inflammatory interventions to interrupt progression and the need for trichiasis disease surveillance and surgery long after chlamydial infection has been controlled at community level.
References
[1]
Hu VH, Holland MJ, Burton MJ (2013) Trachoma: Protective and Pathogenic Ocular Immune Responses to Chlamydia trachomatis. PLoS Negl Trop Dis 7: e2020. doi: 10.1371/journal.pntd.0002020. pmid:23457650
[2]
El-Asrar AM, Van den Oord JJ, Geboes K, Missotten L, Emarah MH, et al. (1989) Immunopathology of trachomatous conjunctivitis. BrJ Ophthalmol 73: 276–282. pmid:2713305 doi: 10.1136/bjo.73.4.276
[3]
Hu VH, Holland MJ, Cree IA, Pullin J, Weiss HA, et al. (2013) In vivo confocal microscopy and histopathology of the conjunctiva in trachomatous scarring and normal tissue: a systematic comparison. Br J Ophthalmol 97: 1333–1337. Epub 302013 Aug 303126. doi: 10.1136/bjophthalmol-2013-303126. pmid:23922266
[4]
(2014) WHO Alliance for the Global Elimination of Blinding Trachoma by the year 2020. Progress report on elimination of trachoma, 2013. Wkly Epidemiol Rec 89: 421–428. pmid:25275153
[5]
Burton MJ, Holland MJ, Makalo P, Aryee EA, Sillah A, et al. (2010) Profound and sustained reduction in Chlamydia trachomatis in The Gambia: a five-year longitudinal study of trachoma endemic communities. PLoS Negl Trop Dis 4: e835. doi: 10.1371/journal.pntd.0000835. pmid:20957147
[6]
Rajak SN, Habtamu E, Weiss HA, Kello AB, Gebre T, et al. (2011) Surgery versus epilation for the treatment of minor trichiasis in Ethiopia: a randomised controlled noninferiority trial. PLoS Med 8: e1001136. doi: 10.1371/journal.pmed.1001136. pmid:22180731
[7]
Rajak SN, Collin JRO, Burton MJ (2012) Trachomatous Trichiasis and its Management in Endemic Countries. Surv Ophthalmol.
[8]
Hu VH, Massae P, Weiss HA, Chevallier C, Onyango JJ, et al. (2011) Bacterial infection in scarring trachoma. Invest Ophthalmol Vis Sci 52: 2181–2186. doi: 10.1167/iovs.10-5829. pmid:21178143
[9]
Hu VH, Weiss HA, Massae P, Courtright P, Makupa W, et al. (2011) In vivo confocal microscopy in scarring trachoma. Ophthalmology 118: 2138–2146. doi: 10.1016/j.ophtha.2011.04.014. pmid:21920608
[10]
Hu VH, Weiss HA, Ramadhani AM, Tolbert SB, Massae P, et al. (2012) Innate immune responses and modified extracellular matrix regulation characterize bacterial infection and cellular/connective tissue changes in scarring trachoma. Infect Immun 80: 121–130. doi: 10.1128/IAI.05965-11. pmid:22038912
[11]
Dawson CR, Jones BR, Tarizzo ML (1981) Guide to Trachoma Control. Geneva: World Health Organization.
[12]
Burton MJ, Rajak SN, Bauer J, Weiss HA, Tolbert SB, et al. (2011) Conjunctival transcriptome in scarring trachoma. Infect Immun 79: 499–511. doi: 10.1128/IAI.00888-10. pmid:20937763
[13]
Burton MJ, Holland MJ, Faal N, Aryee EA, Alexander ND, et al. (2003) Which members of a community need antibiotics to control trachoma? Conjunctival Chlamydia trachomatis infection load in Gambian villages. Invest OphthalmolVisSci 44: 4215–4222. pmid:14507864 doi: 10.1167/iovs.03-0107
[14]
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408. pmid:11846609 doi: 10.1006/meth.2001.1262
[15]
Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate:a Practical and Powerful Approach to Multiple Testing. J RStatistics Soc 57: 289–300.
[16]
Song WM, Di Matteo T, Aste T (2012) Hierarchical information clustering by means of topologically embedded graphs. PLoS One 7: e31929. Epub 0032012 Mar 0031929. doi: 10.1371/journal.pone.0031929. pmid:22427814
[17]
Rahmatallah Y, Emmert-Streib F, Glazko G (2014) Gene Sets Net Correlations Analysis (GSNCA): a multivariate differential coexpression test for gene sets. Bioinformatics 30: 360–368. Epub 2013 Nov 1030. doi: 10.1093/bioinformatics/btt687. pmid:24292935
[18]
Dawson CR, Marx R, Daghfous T, Juster R, Schachter J (1990) What clinical signs are critical in evaluating the intervention in trachoma? In: Bowie WR, editor. Chlamydial Infections. Cambridge: Cambridge University Press. pp. 271–278.
[19]
Wolle MA, Munoz B, Mkocha H, West SK (2009) Age, sex, and cohort effects in a longitudinal study of trachomatous scarring. Invest Ophthalmol Vis Sci 50: 592–596. doi: 10.1167/iovs.08-2414. pmid:18936137
[20]
Munoz B, Aron J, Turner V, West S (1997) Incidence estimates of late stages of trachoma among women in a hyperendemic area of central Tanzania. TropMedInt Health 2: 1030–1038. doi: 10.1046/j.1365-3156.1997.d01-186.x
[21]
West SK, Munoz B, Mkocha H, Hsieh YH, Lynch MC (2001) Progression of active trachoma to scarring in a cohort of Tanzanian children. Ophthalmic Epidemiol 8: 137–144. pmid:11471083 doi: 10.1076/opep.8.2.137.4158
[22]
Wolle MA, Munoz BE, Mkocha H, West SK (2009) Constant Ocular Infection with Chlamydia trachomatis Predicts Risk of Scarring in Children in Tanzania. Ophthalmology 116: 243–247. doi: 10.1016/j.ophtha.2008.09.011. pmid:19091415
[23]
Berhane Y, Worku A, Bejiga A (2006) National Survey on Blindness, Low Vision and Trachoma in Ethiopia. Addis Ababa: Federal Ministry of Health of Ethiopia.
[24]
Solomon AW, Harding-Esch E, Alexander ND, Aguirre A, Holland MJ, et al. (2008) Two doses of azithromycin to eliminate trachoma in a Tanzanian community. NEnglJ Med 358: 1870–1871. doi: 10.1056/nejmc0706263
[25]
Biebesheimer JB, House J, Hong KC, Lakew T, Alemayehu W, et al. (2009) Complete local elimination of infectious trachoma from severely affected communities after six biannual mass azithromycin distributions. Ophthalmology 116: 2047–2050. doi: 10.1016/j.ophtha.2009.04.041. pmid:19744717
[26]
Keenan JD, Lakew T, Alemayehu W, Melese M, Porco TC, et al. (2010) Clinical activity and polymerase chain reaction evidence of chlamydial infection after repeated mass antibiotic treatments for trachoma. Am J Trop Med Hyg 82: 482–487. doi: 10.4269/ajtmh.2010.09-0315. pmid:20207878
[27]
Burton MJ, Ramadhani A, Weiss HA, Hu VH, Massae P, et al. (2011) Active trachoma is associated with increased conjunctival expression of IL17A and pro-fibrotic cytokines. Infect Immun 79: 4977–4983. doi: 10.1128/IAI.05718-11. pmid:21911461
[28]
Amsden GW (2005) Anti-inflammatory effects of macrolides—an underappreciated benefit in the treatment of community-acquired respiratory tract infections and chronic inflammatory pulmonary conditions? J Antimicrob Chemother 55: 10–21. Epub 2004 Dec 2008. pmid:15590715 doi: 10.1093/jac/dkh519
[29]
Grassly NC, Ward ME, Ferris S, Mabey DC, Bailey RL (2008) The natural history of trachoma infection and disease in a gambian cohort with frequent follow-up. PLoSNeglTropDis 2: e341. doi: 10.1371/journal.pntd.0000341
[30]
Solomon AW, Holland MJ, Burton MJ, West SK, Alexander ND, et al. (2003) Strategies for control of trachoma: observational study with quantitative PCR. Lancet 362: 198–204. pmid:12885481 doi: 10.1016/s0140-6736(03)13909-8
[31]
Bowman RJ, Jatta B, Cham B, Bailey RL, Faal H, et al. (2001) Natural history of trachomatous scarring in The Gambia: results of a 12-year longitudinal follow-up. Ophthalmology 108: 2219–2224. pmid:11733262 doi: 10.1016/s0161-6420(01)00645-5
[32]
Burton MJ, Kinteh F, Jallow O, Sillah A, Bah M, et al. (2005) A randomised controlled trial of azithromycin following surgery for trachomatous trichiasis in the Gambia. BrJ Ophthalmol 89: 1282–1288. pmid:16170117 doi: 10.1136/bjo.2004.062489
[33]
Cevallos V, Whitcher JP, Melese M, Alemayehu W, Yi E, et al. (2012) Association of conjunctival bacterial infection and female sex in cicatricial trachoma. Invest Ophthalmol Vis Sci 53: 5208–5212. doi: 10.1167/iovs.12-9984. pmid:22736616
[34]
Zhou Y, Holland MJ, Makalo P, Joof H, Roberts CH, et al. (2014) The conjunctival microbiome in health and trachomatous disease Genome Medicine.
[35]
Foster SL, Hargreaves DC, Medzhitov R (2007) Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 447: 972–978. Epub 2007 May 2030. pmid:17538624 doi: 10.1038/nature05836
[36]
Saeed S, Quintin J, Kerstens HH, Rao NA, Aghajanirefah A, et al. (2014) Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345: 1251086. doi: 10.1126/science.1251086. pmid:25258085
[37]
Kleinnijenhuis J, Quintin J, Preijers F, Joosten LA, Ifrim DC, et al. (2012) Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci U S A 109: 17537–17542. Epub 1202872012 Sep 1202870117. doi: 10.1073/pnas.1202870109. pmid:22988082
[38]
Natividad A, Freeman TC, Jeffries D, Burton MJ, Mabey DC, et al. (2010) Human conjunctival transcriptome analysis reveals the prominence of innate defense in Chlamydia trachomatis infection. Infect Immun 78: 4895–4911. doi: 10.1128/IAI.00844-10. pmid:20823212
[39]
Burton MJ, Rajak SN, Ramadhani A, Weiss HA, Habtamu E, et al. (2012) Post-operative recurrent trachomatous trichiasis is associated with increased conjunctival expression of S100A7 (psoriasin). PLoS Negl Trop Dis 6: e1985. Epub 0002012 Dec 0001920. doi: 10.1371/journal.pntd.0001985. pmid:23285311
[40]
Glaser R, Harder J, Lange H, Bartels J, Christophers E, et al. (2005) Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. NatImmunol 6: 57–64. pmid:15568027 doi: 10.1038/ni1142
[41]
Jeyaseelan S, Manzer R, Young SK, Yamamoto M, Akira S, et al. (2005) Induction of CXCL5 during inflammation in the rodent lung involves activation of alveolar epithelium. AmJ RespirCell MolBiol 32: 531–539. pmid:15778492 doi: 10.1165/rcmb.2005-0063oc
[42]
Han SU, Kwak TH, Her KH, Cho YH, Choi C, et al. (2008) CEACAM5 and CEACAM6 are major target genes for Smad3-mediated TGF-beta signaling. Oncogene 27: 675–683. pmid:17653079 doi: 10.1038/sj.onc.1210686
[43]
Klaile E, Klassert TE, Scheffrahn I, Muller MM, Heinrich A, et al. (2013) Carcinoembryonic antigen (CEA)-related cell adhesion molecules are co-expressed in the human lung and their expression can be modulated in bronchial epithelial cells by non-typable Haemophilus influenzae, Moraxella catarrhalis, TLR3, and type I and II interferons. Respir Res 14:85. doi: 10.1186/1465-9921-14-85. pmid:23941132
[44]
Abraham D (2008) Connective tissue growth factor: growth factor, matricellular organizer, fibrotic biomarker or molecular target for anti-fibrotic therapy in SSc? Rheumatology (Oxford) 47 Suppl 5: v8–9. doi: 10.1093/rheumatology/ken278
[45]
Gressner OA, Gressner AM (2008) Connective tissue growth factor: a fibrogenic master switch in fibrotic liver diseases. Liver Int 28: 1065–1079. doi: 10.1111/j.1478-3231.2008.01826.x. pmid:18783549
[46]
Phanish MK, Winn SK, Dockrell ME (2010) Connective tissue growth factor-(CTGF, CCN2)—a marker, mediator and therapeutic target for renal fibrosis. Nephron Exp Nephrol 114: e83–92. doi: 10.1159/000262316. pmid:19955828
[47]
Murphy-Ullrich JE, Sage EH (2014) Revisiting the matricellular concept. Matrix Biol 37:1–14. Epub 2014 Jul 1024. doi: 10.1016/j.matbio.2014.07.005. pmid:25064829
[48]
Mori T, Kawara S, Shinozaki M, Hayashi N, Kakinuma T, et al. (1999) Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: A mouse fibrosis model. J Cell Physiol 181: 153–159. pmid:10457363 doi: 10.1002/(sici)1097-4652(199910)181:1<153::aid-jcp16>3.0.co;2-k
[49]
Dendooven A, Gerritsen KG, Nguyen TQ, Kok RJ, Goldschmeding R (2011) Connective tissue growth factor (CTGF/CCN2) ELISA: a novel tool for monitoring fibrosis. Biomarkers 16: 289–301. doi: 10.3109/1354750X.2011.561366. pmid:21595567
[50]
Chaurasia SS, Perera PR, Poh R, Lim RR, Wong TT, et al. (2013) Hevin plays a pivotal role in corneal wound healing. PLoS One 8: e81544. eCollection 0082013. doi: 10.1371/journal.pone.0081544. pmid:24303054