Simvastatin and Benznidazole-Mediated Prevention of Trypanosoma cruzi-Induced Endothelial Activation: Role of 15-epi-lipoxin A4 in the Action of Simvastatin
Trypanosoma cruzi is the causal agent of Chagas Disease that is endemic in Latin American, afflicting more than ten million people approximately. This disease has two phases, acute and chronic. The acute phase is often asymptomatic, but with time it progresses to the chronic phase, affecting the heart and gastrointestinal tract and can be lethal. Chronic Chagas cardiomyopathy involves an inflammatory vasculopathy. Endothelial activation during Chagas disease entails the expression of cell adhesion molecules such as E-selectin, vascular cell adhesion molecule-1 (VCAM-1) and intercellular cell adhesion molecule-1 (ICAM-1) through a mechanism involving NF-κB activation. Currently, specific trypanocidal therapy remains on benznidazole, although new triazole derivatives are promising. A novel strategy is proposed that aims at some pathophysiological processes to facilitate current antiparasitic therapy, decreasing treatment length or doses and slowing disease progress. Simvastatin has anti-inflammatory actions, including improvement of endothelial function, by inducing a novel pro-resolving lipid, the 5-lypoxygenase derivative 15-epi-lipoxin A4 (15-epi-LXA4), which belongs to aspirin-triggered lipoxins. Herein, we propose modifying endothelial activation with simvastatin or benznidazole and evaluate the pathways involved, including induction of 15-epi-LXA4. The effect of 5 μM simvastatin or 20 μM benznidazole upon endothelial activation was assessed in EA.hy926 or HUVEC cells, by E-selectin, ICAM-1 and VCAM-1 expression. 15-epi-LXA4 production and the relationship of both drugs with the NFκB pathway, as measured by IKK-IKB phosphorylation and nuclear migration of p65 protein was also assayed. Both drugs were administered to cell cultures 16 hours before the infection with T. cruzi parasites. Indeed, 5 μM simvastatin as well as 20 μM benznidazole prevented the increase in E-selectin, ICAM-1 and VCAM-1 expression in T. cruzi-infected endothelial cells by decreasing the NF-κB pathway. In conclusion, Simvastatin and benznidazole prevent endothelial activation induced by T. cruzi infection, and the effect of simvastatin is mediated by the inhibition of the NFκB pathway by inducing 15-epi-LXA4 production.
References
[1]
WHO Working to overcome the global impact of neglected tropical diseases: first WHO report on neglected tropical diseases: update 2011. Geneva: World Health Organization. 2011. viii, 14 p. p.
[2]
Coura JR. Chagas disease: control, elimination and eradication. Is it possible? Mem Inst Oswaldo Cruz 2013; 108: 962–967. doi: 10.1590/0074-0276130565. pmid:24402148
[3]
Rassi A Jr., Rassi A, Marcondes de Rezende J. American trypanosomiasis (Chagas disease). Infect Dis Clin North Am 2012; 26: 275–291. doi: 10.1016/j.idc.2012.03.002. pmid:22632639
[4]
Ribeiro AL, Nunes MP, Teixeira MM, Rocha MO. Diagnosis and management of Chagas disease and cardiomyopathy. Nat Rev Cardiol 2012; 9: 576–589. doi: 10.1038/nrcardio.2012.109. pmid:22847166
[5]
Andrade D, Serra R, Svensjo E, Lima AP, Ramos ES Jr., et al. Trypanosoma cruzi invades host cells through the activation of endothelin and bradykinin receptors: a converging pathway leading to Chagasic vasculopathy. Br J Pharmacol 2012; 165: 1333–1347. doi: 10.1111/j.1476-5381.2011.01609.x. pmid:21797847
[6]
Molina-Berrios A, Campos-Estrada C, Lapier M, Duaso J, Kemmerling U, et al. Benznidazole prevents endothelial damage in an experimental model of Chagas disease. Acta Trop 2013; 127: 6–13. doi: 10.1016/j.actatropica.2013.03.006. pmid:23529066
[7]
Huang H, Petkova SB, Cohen AW, Bouzahzah B, Chan J, et al. Activation of transcription factors AP-1 and NF-kappa B in murine Chagasic myocarditis. Infect Immun 2003; 71: 2859–2867. pmid:12704159 doi: 10.1128/iai.71.5.2859-2867.2003
[8]
Prado CM, Jelicks LA, Weiss LM, Factor SM, Tanowitz HB, et al. The vasculature in Chagas disease. Adv Parasitol 2011; 76: 83–99. doi: 10.1016/B978-0-12-385895-5.00004-9. pmid:21884888
[9]
Rossi MA, Tanowitz HB, Malvestio LM, Celes MR, Campos EC, et al. Coronary microvascular disease in chronic Chagas cardiomyopathy including an overview on history, pathology, and other proposed pathogenic mechanisms. PLoS Negl Trop Dis 2010; 4: e674. doi: 10.1371/journal.pntd.0000674. pmid:20824217
[10]
Molina-Berrios A, Campos-Estrada C, Henriquez N, Faundez M, Torres G, et al. Protective role of acetylsalicylic acid in experimental Trypanosoma cruzi infection: evidence of a 15-epi-lipoxin A(4)-mediated effect. PLoS Negl Trop Dis 2013; 7: e2173. doi: 10.1371/journal.pntd.0002173. pmid:23638194
[11]
Melo L, Caldas IS, Azevedo MA, Goncalves KR, da Silva do Nascimento AF, et al. Low doses of simvastatin therapy ameliorate cardiac inflammatory remodeling in Trypanosoma cruzi-infected dogs. Am J Trop Med Hyg 2011; 84: 325–331. doi: 10.4269/ajtmh.2011.10-0451. pmid:21292909
[12]
Birnbaum Y, Ye Y, Lin Y, Freeberg SY, Huang MH, et al. Aspirin augments 15-epi-lipoxin A4 production by lipopolysaccharide, but blocks the pioglitazone and atorvastatin induction of 15-epi-lipoxin A4 in the rat heart. Prostaglandins Other Lipid Mediat 2007; 83: 89–98. pmid:17259075 doi: 10.1016/j.prostaglandins.2006.10.003
[13]
Aranda E, Owen GI. A semi-quantitative assay to screen for angiogenic compounds and compounds with angiogenic potential using the EA.hy926 endothelial cell line. Biol Res 2009; 42: 377–389. doi: /S0716-97602009000300012. pmid:19915746
[14]
Collins SJ, Gallo RC, Gallagher RE. Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature 1977; 270: 347–349. pmid:271272 doi: 10.1038/270347a0
[15]
Contreras VT, Araujo-Jorge TC, Bonaldo MC, Thomaz N, Barbosa HS, et al. Biological aspects of the Dm 28c clone of Trypanosoma cruzi after metacyclogenesis in chemically defined media. Mem Inst Oswaldo Cruz 1988; 83: 123–133. pmid:3074237 doi: 10.1590/s0074-02761988000100016
[16]
Stach K, Nguyen XD, Lang S, Elmas E, Weiss C, et al. Simvastatin and atorvastatin attenuate VCAM-1 and uPAR expression on human endothelial cells and platelet surface expression of CD40 ligand. Cardiol J 2012; 19: 20–28. pmid:22298164 doi: 10.5603/cj.2012.0005
[17]
Yang JC, Huang F, Wu CJ, Chen YC, Lu TH, et al. Simvastatin reduces VCAM-1 expression in human umbilical vein endothelial cells exposed to lipopolysaccharide. Inflamm Res 2012; 61: 485–491. doi: 10.1007/s00011-012-0435-9. pmid:22245985
[18]
Lopez-Munoz R, Faundez M, Klein S, Escanilla S, Torres G, et al. Trypanosoma cruzi: In vitro effect of aspirin with nifurtimox and benznidazole. Exp Parasitol 2010; 124: 167–171. doi: 10.1016/j.exppara.2009.09.005. pmid:19735656
[19]
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55–63. pmid:6606682 doi: 10.1016/0022-1759(83)90303-4
[20]
Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 2006; 58: 621–681. pmid:16968952 doi: 10.1124/pr.58.3.10
[21]
Tong S, Neboori HJ, Tran ED, Schmid-Schonbein GW. Constitutive expression and enzymatic cleavage of ICAM-1 in the spontaneously hypertensive rat. J Vasc Res 2011; 48: 386–396. doi: 10.1159/000323474. pmid:21464573
[22]
Copaja M, Venegas D, Aranguiz P, Canales J, Vivar R, et al. Simvastatin disrupts cytoskeleton and decreases cardiac fibroblast adhesion, migration and viability. Toxicology 2012; 294: 42–49. doi: 10.1016/j.tox.2012.01.011. pmid:22306966
[23]
Liang Y, Li X, Zhang X, Li Z, Wang L, et al. Elevated levels of plasma TNF-alpha are associated with microvascular endothelial dysfunction in patients with sepsis through activating the NF-kappaB and p38 mitogen-activated protein kinase in endothelial cells. Shock 2014; 41: 275–281. doi: 10.1097/SHK.0000000000000116. pmid:24430552
[24]
Birnbaum Y, Ye Y. Pleiotropic effects of statins: the role of eicosanoid production. Curr Atheroscler Rep 2012; 14: 135–139. doi: 10.1007/s11883-012-0232-5. pmid:22286195
[25]
Yoshimoto T, Yokoyama C, Ochi K, Yamamoto S, Maki Y, et al. 2,3,5-Trimethyl-6-(12-hydroxy-5,10-dodec?adiynyl)-1,4-benzoquinone(AA861), a selective inhibitor of the 5-lipoxygenase reaction and the biosynthesis of slow-reacting substance of anaphylaxis. Biochim Biophys Acta 1982; 713: 470–473. pmid:6817808 doi: 10.1016/0005-2760(82)90267-3
[26]
Lee HM, Ok SH, Sung HJ, Eun SY, Kim HJ, et al. Mepivacaine-induced contraction involves phosphorylation of extracellular signal-regulated kinase through activation of the lipoxygenase pathway in isolated rat aortic smooth muscle. Can J Physiol Pharmacol 2013; 91: 285–294. doi: 10.1139/cjpp-2012-0197. pmid:23627840
[27]
Choi YS, Jeong YS, Ok SH, Shin IW, Lee SH, et al. The direct effect of levobupivacaine in isolated rat aorta involves lipoxygenase pathway activation and endothelial nitric oxide release. Anesth Analg 2010; 110: 341–349. doi: 10.1213/ANE.0b013e3181c76f52. pmid:19955508
[28]
Kim BJ, Kim SY, Lee S, Jeon JH, Matsui H, et al. The role of transient receptor potential channel blockers in human gastric cancer cell viability. Can J Physiol Pharmacol 2012; 90: 175–186. doi: 10.1139/y11-114. pmid:22308955
[29]
Lee S, Felts KA, Parry GC, Armacost LM, Cobb RR. Inhibition of 5-lipoxygenase blocks IL-1 beta-induced vascular adhesion molecule-1 gene expression in human endothelial cells. J Immunol 1997; 158: 3401–3407. pmid:9120300
[30]
Kempe S, Kestler H, Lasar A, Wirth T. NF-kappaB controls the global pro-inflammatory response in endothelial cells: evidence for the regulation of a pro-atherogenic program. Nucleic Acids Res 2005; 33: 5308–5319. pmid:16177180 doi: 10.1093/nar/gki836
[31]
Norata GD, Tibolla G, Seccomandi PM, Poletti A, Catapano AL. Dihydrotestosterone decreases tumor necrosis factor-alpha and lipopolysaccharide-induced inflammatory response in human endothelial cells. J Clin Endocrinol Metab 2006; 91: 546–554. pmid:16317058 doi: 10.1210/jc.2005-1664
[32]
Dias WB, Fajardo FD, Graca-Souza AV, Freire-de-Lima L, Vieira F, et al. Endothelial cell signalling induced by trans-sialidase from Trypanosoma cruzi. Cell Microbiol 2008; 10: 88–99. pmid:17672865 doi: 10.1111/j.1462-5822.2007.01017.x
[33]
Cutrullis RA, Moscatelli GF, Moroni S, Volta BJ, Cardoni RL, et al. Benznidazole therapy modulates interferon-gamma and M2 muscarinic receptor autoantibody responses in Trypanosoma cruzi-infected children. PLoS One 2011; 6: e27133. doi: 10.1371/journal.pone.0027133. pmid:22066031
[34]
Manarin R, Pascutti MF, Ruffino JP, De Las Heras B, Bosca L, et al. Benznidazole blocks NF-kappaB activation but not AP-1 through inhibition of IKK. Mol Immunol 2010; 47: 2485–2491. doi: 10.1016/j.molimm.2010.06.002. pmid:20598748
[35]
Ronco MT, Manarin R, Frances D, Serra E, Revelli S, et al. Benznidazole treatment attenuates liver NF-kappaB activity and MAPK in a cecal ligation and puncture model of sepsis. Mol Immunol 2011; 48: 867–873. doi: 10.1016/j.molimm.2010.12.021. pmid:21269697
[36]
Silva RR, Shrestha-Bajracharya D, Almeida-Leite CM, Leite R, Bahia MT, et al. Short-term therapy with simvastatin reduces inflammatory mediators and heart inflammation during the acute phase of experimental Chagas disease. Mem Inst Oswaldo Cruz 2012; 107: 513–521. pmid:22666863 doi: 10.1590/s0074-02762012000400012
[37]
Ortego M, Gomez-Hernandez A, Vidal C, Sanchez-Galan E, Blanco-Colio LM, et al. HMG-CoA reductase inhibitors reduce I kappa B kinase activity induced by oxidative stress in monocytes and vascular smooth muscle cells. J Cardiovasc Pharmacol 2005; 45: 468–475. pmid:15821443 doi: 10.1097/01.fjc.0000159042.50488.e5
[38]
Berenbaum MC. What Is Synergy. Pharmacological Reviews 1989; 41: 93–141. pmid:2692037
[39]
Fitzgerald JB, Schoeberl B, Nielsen UB, Sorger PK. Systems biology and combination therapy in the quest for clinical efficacy. Nat Chem Biol 2006; 2: 458–466. pmid:16921358 doi: 10.1038/nchembio817
[40]
Pavanelli WR, Gutierrez FR, Mariano FS, Prado CM, Ferreira BR, et al. 5-lipoxygenase is a key determinant of acute myocardial inflammation and mortality during Trypanosoma cruzi infection. Microbes Infect 2010; 12: 587–597. doi: 10.1016/j.micinf.2010.03.016. pmid:20381637
[41]
Machado FS, Dutra WO, Esper L, Gollob KJ, Teixeira MM, et al. Current understanding of immunity to Trypanosoma cruzi infection and pathogenesis of Chagas disease. Semin Immunopathol 2012; 34: 753–770. doi: 10.1007/s00281-012-0351-7. pmid:23076807
[42]
Talvani A, Teixeira MM. Inflammation and Chagas disease some mechanisms and relevance. Adv Parasitol 2011; 76: 171–194. doi: 10.1016/B978-0-12-385895-5.00008-6. pmid:21884892
[43]
Buckley CD, Gilroy DW, Serhan CN. Proresolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity 2014; 40: 315–327. doi: 10.1016/j.immuni.2014.02.009. pmid:24656045
[44]
Chinthamani S, Odusanwo O, Mondal N, Nelson J, Neelamegham S, et al. Lipoxin A4 inhibits immune cell binding to salivary epithelium and vascular endothelium. Am J Physiol Cell Physiol 2012; 302: C968–978. doi: 10.1152/ajpcell.00259.2011. pmid:22205391
[45]
Serhan CN. Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot Essent Fatty Acids 2005; 73: 141–162. pmid:16005201 doi: 10.1016/j.plefa.2005.05.002