全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Multiplex Real-Time PCR Assay Using TaqMan Probes for the Identification of Trypanosoma cruzi DTUs in Biological and Clinical Samples

DOI: 10.1371/journal.pntd.0003765

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Trypanosoma cruzi has been classified into six Discrete Typing Units (DTUs), designated as TcI–TcVI. In order to effectively use this standardized nomenclature, a reproducible genotyping strategy is imperative. Several typing schemes have been developed with variable levels of complexity, selectivity and analytical sensitivity. Most of them can be only applied to cultured stocks. In this context, we aimed to develop a multiplex Real-Time PCR method to identify the six T. cruzi DTUs using TaqMan probes (MTq-PCR). Methods/Principal Findings The MTq-PCR has been evaluated in 39 cultured stocks and 307 biological samples from vectors, reservoirs and patients from different geographical regions and transmission cycles in comparison with a multi-locus conventional PCR algorithm. The MTq-PCR was inclusive for laboratory stocks and natural isolates and sensitive for direct typing of different biological samples from vectors, reservoirs and patients with acute, congenital infection or Chagas reactivation. The first round SL-IR MTq-PCR detected 1 fg DNA/reaction tube of TcI, TcII and TcIII and 1 pg DNA/reaction tube of TcIV, TcV and TcVI reference strains. The MTq-PCR was able to characterize DTUs in 83% of triatomine and 96% of reservoir samples that had been typed by conventional PCR methods. Regarding clinical samples, 100% of those derived from acute infected patients, 62.5% from congenitally infected children and 50% from patients with clinical reactivation could be genotyped. Sensitivity for direct typing of blood samples from chronic Chagas disease patients (32.8% from asymptomatic and 22.2% from symptomatic patients) and mixed infections was lower than that of the conventional PCR algorithm. Conclusions/Significance Typing is resolved after a single or a second round of Real-Time PCR, depending on the DTU. This format reduces carryover contamination and is amenable to quantification, automation and kit production.

References

[1]  Barnabé C, Brisse S, Tibayrenc M. Population structure and genetic typing of Trypanosoma cruzi, the agent of Chagas disease: a multilocus enzyme electrophoresis approach. Parasitology. 2000; 120(5): 513–526. doi: 10.1017/s0031182099005661
[2]  Brisse S, Dujardin JC, Tibayrenc M. Identification of six Trypanosoma cruzi lineages by sequence-characterised amplified region markers. Mol Biochem Parasitol. 2000; 111(1): 95–105. pmid:11087920 doi: 10.1016/s0166-6851(00)00302-9
[3]  Lewis MD, Llewellyn MS, Gaunt MW, Yeo M, Carrasco HJ, Miles MA. Flow cytometric analysis and microsatellite genotyping reveal extensive DNA content variation in Trypanosoma cruzi populations and expose contrasts between natural and experimental hybrids. Int J Parasitol. 2009; 39(12): 1305–1317. doi: 10.1016/j.ijpara.2009.04.001. pmid:19393242
[4]  Miles MA, Cibulskis RE. Zymodeme characterization of Trypanosoma cruzi. Parasitol Today. 1986; 2(4): 94–97. pmid:15462787 doi: 10.1016/0169-4758(86)90037-2
[5]  Tibayrenc M, Ayala FJ. Isozyme variability in Trypanosoma cruzi, the agent of Chagas-disease—genetic, taxonomical, and epidemiological significance. Evolution. 1988; 42(2): 277–292. doi: 10.2307/2409232
[6]  Zingales B, Andrade SG, Briones MR, Campbell DA, Chiari E, Fernandes O, et al. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz. 2009; 104(7): 1051–1054. pmid:20027478 doi: 10.1590/s0074-02762009000700021
[7]  Miles MA, Llewellyn MS, Lewis MD, Yeo M, Baleela R, Fitzpatrick S, et al. The molecular epidemiology and phylogeography of Trypanosoma cruzi and parallel research on Leishmania: looking back and to the future. Parasitology. 2009; 136(12): 1509–1528. doi: 10.1017/S0031182009990977. pmid:19691868
[8]  Zingales B, Miles MA, Campbell DA, Tibayrenc M, Macedo AM, Teixeira MM, et al. The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol. 2012; 12(2): 240–253. doi: 10.1016/j.meegid.2011.12.009. pmid:22226704
[9]  Burgos JM, Begher SB, Freitas JM, Bisio M, Duffy T, Altcheh J, et al. Molecular diagnosis and typing of Trypanosoma cruzi populations and lineages in cerebral Chagas disease in a patient with AIDS. Am J Trop Med Hyg. 2005; 73(6): 1016–1018. pmid:16354804
[10]  Burgos JM, Begher S, Silva HM, Bisio M, Duffy T, Levin MJ, et al. Molecular identification of Trypanosoma cruzi I tropism for central nervous system in Chagas reactivation due to AIDS. Am J Trop Med Hyg. 2008; 78(2): 294–297. pmid:18256432
[11]  Burgos JM, Diez M, Vigliano C, Bisio M, Risso M, Duffy T, et al. Molecular identification of Trypanosoma cruzi discrete typing units in end-stage chronic Chagas heart disease and reactivation after heart transplantation. Clin Infect Dis. 2010; 51(5): 485–495. doi: 10.1086/655680. pmid:20645859
[12]  Marcili A, Lima L, Cavazzana M, Junqueira AC, Veludo HH, Maia Da Silva F, et al. A new genotype of Trypanosoma cruzi associated with bats evidenced by phylogenetic analyses using SSU rDNA, cytochrome b and Histone H2B genes and genotyping based on ITS1 rDNA. Parasitology. 2009; 136(6): 641–655. doi: 10.1017/S0031182009005861. pmid:19368741
[13]  Pinto CM, Kalko EK, Cottontail I, Wellinghausen N, Cottontail VM. TcBat a bat-exclusive lineage of Trypanosoma cruzi in the Panama Canal Zone, with comments on its classification and the use of the 18S rRNA gene for lineage identification. Infect Genet Evol. 2012; 12(6): 1328–1332. doi: 10.1016/j.meegid.2012.04.013. pmid:22543008
[14]  Ramírez JD, Hernández C, Montilla M, Zambrano P, Flórez AC, Parra E, et al. First report of human Trypanosoma cruzi infection attributed to TcBat genotype. Zoonoses Public Health. 2014; 61(7): 477–479. doi: 10.1111/zph.12094. pmid:25285940
[15]  Brisse S, Verhoef J,Tibayrenc M. Characterisation of large and small subunit rRNA and mini-exon genes further supports the distinction of six Trypanosoma cruzi lineages. Int J Parasitol. 2001; 31(11): 1218–1226. pmid:11513891 doi: 10.1016/s0020-7519(01)00238-7
[16]  Rozas M, De Doncker S, Adaui V, Coronado X, Barnabé C, Tibyarenc M, et al. Multilocus polymerase chain reaction restriction fragment-length polymorphism genotyping of Trypanosoma cruzi (Chagas disease): taxonomic and clinical applications. J Infect Dis. 2007; 195(9): 1381–1388. pmid:17397011 doi: 10.1086/513440
[17]  Burgos JM, Altcheh J, Bisio M, Duffy T, Valadares HM, Seidenstein ME, et al. Direct molecular profiling of minicircle signatures and lineages of Trypanosoma cruzi bloodstream populations causing congenital Chagas disease. Int J Parasitol. 2007; 37(12): 1319–1327. pmid:17570369 doi: 10.1016/j.ijpara.2007.04.015
[18]  Lewis MD, Ma J, Yeo M, Carrasco HJ, Llewellyn MS, Miles MA. Genotyping of Trypanosoma cruzi: systematic selection of assays allowing rapid and accurate discrimination of all known lineages. Am J Trop Med Hyg. 2009; 81(6): 1041–1049. doi: 10.4269/ajtmh.2009.09-0305. pmid:19996435
[19]  D'Avila DA, Macedo AM, Valadares HM, Gontijo ED, de Castro AM, Machado CR, et al. Probing population dynamics of Trypanosoma cruzi during progression of the chronic phase in chagasic patients. J Clin Microbiol. 2009; 47(6): 1718–1725. doi: 10.1128/JCM.01658-08. pmid:19357212
[20]  Hamilton PB, Lewis MD, Cruickshank C, Gaunt MW, Yeo M, Llewellyn MS, et al. Identification and lineage genotyping of South American trypanosomes using fluorescent fragment length barcoding. Infect Genet Evol. 2011; 11(1): 44–51. doi: 10.1016/j.meegid.2010.10.012. pmid:21029792
[21]  Yeo M, Mauricio IL, Messenger LA, Lewis MD, Llewellyn MS, Acosta N, et al. Multilocus sequence typing (MLST) for lineage assignment and high resolution diversity studies in Trypanosoma cruzi. PLoS Negl Trop Dis. 2011; 5(6): e1049. doi: 10.1371/journal.pntd.0001049. pmid:21713026
[22]  Lauthier JJ, Tomasini N, Barnabé C, Rumi MM, D'Amato AM, Ragone PG, et al. Candidate targets for Multilocus Sequence Typing of Trypanosoma cruzi: validation using parasite stocks from the Chaco Region and a set of reference strains. Infect Genet Evol. 2012; 12(2): 350–358. doi: 10.1016/j.meegid.2011.12.008. pmid:22210092
[23]  Cosentino RO, Agüero F. A simple strain typing assay for Trypanosoma cruzi: discrimination of major evolutionary lineages from a single amplification product. PLoS Negl Trop Dis. 2012; 6(7): e1777. doi: 10.1371/journal.pntd.0001777. pmid:22860154
[24]  Macedo AM, Pena SD. Genetic Variability of Trypanosoma cruzi: Implications for the Pathogenesis of Chagas Disease. Parasitol Today. 1998; 14(3): 119–124. pmid:17040719 doi: 10.1016/s0169-4758(97)01179-4
[25]  Marcet PL, Duffy T, Cardinal MV, Burgos JM, Lauricella MA, Levin MJ, et al. PCR-based screening and lineage identification of Trypanosoma cruzi directly from faecal samples of triatomine bugs from northwestern Argentina. Parasitology. 2006; 132(1): 57–65. pmid:16231180 doi: 10.1017/s0031182005008772
[26]  Tomasini N, Lauthier JJ, Monje Rumi MM, Ragone PG, Alberti D'Amato AA, Pérez Brandan C, et al. Interest and limitations of Spliced Leader Intergenic Region sequences for analyzing Trypanosoma cruzi I phylogenetic diversity in the Argentinean Chaco. Infect Genet Evol. 2011; 11(2): 300–307. doi: 10.1016/j.meegid.2010.10.020. pmid:21111067
[27]  Macina RA, Arauzo S, Reyes MB, Sanchez DO, Basombrio MA, Montamat EE, et al. Trypanosoma cruzi isolates from Argentina and Chile grouped with the aid of DNA probes. Mol Biochem Parasitol. 1987; 25(1): 45–53. pmid:2823134 doi: 10.1016/0166-6851(87)90017-x
[28]  Basombrío MA, Besuschio S, Cossio PM. Side effects of immunization with liver attenuated Trypanosoma cruzi in mice and rabbits. Infect Immun. 1982; 36(1): 342–350. pmid:6804389
[29]  Tibayrenc M, Miles MA. A genetic comparison between Brazilian and Bolivian zymodemes of Trypanosoma cruzi. Trans R Soc Trop Med Hyg. 1983; 77(1): 76–83. pmid:6344363 doi: 10.1016/0035-9203(83)90021-4
[30]  Cura CI, Mejía-Jaramillo AM, Duffy T, Burgos JM, Rodriguero M, Cardinal MV, et al. Trypanosoma cruzi I genotypes in different geographical regions and transmission cycles based on a microsatellite motif of the intergenic spacer of spliced-leader genes. Int J Parasitol. 2010; 40(14): 1599–1607. doi: 10.1016/j.ijpara.2010.06.006. pmid:20670628
[31]  Henriksson J, Dujardin JC, Barnabé C, Brisse S, Timperman G, Venegas J, et al. Chromosomal size variation in Trypanosoma cruzi is mainly progressive and is evolutionarily informative. Parasitology. 2002; 124(3): 277–286. doi: 10.1017/s0031182001001093
[32]  Tsuhako MH, Alves MJ, Colli W, Filardi LS, Brener Z, Augusto O. Comparative studies of nifurtimox uptake and metabolism by drug-resistant and susceptible strains of Trypanosoma cruzi. Comp Biochem Physiol C. 1991; 99(3): 317–321. pmid:1685402 doi: 10.1016/0742-8413(91)90248-r
[33]  Ragone PG, Pérez Brandán C, Padilla AM, Monje Rumi M, Lauthier JJ, Alberti D'Amato AM, et al. Biological behavior of different Trypanosoma cruzi isolates circulating in an endemic area for Chagas disease in the Gran Chaco region of Argentina. Acta Trop. 2012; 123(3): 196–201. doi: 10.1016/j.actatropica.2012.05.003. pmid:22643298
[34]  Roellig DM, Savage MY, Fujita AW, Barnabé C, Tibayrenc M, Steurer FJ, et al. Genetic variation and exchange in Trypanosoma cruzi isolates from the United States. PLoS One. 2013; 8(2): e56198. doi: 10.1371/journal.pone.0056198. pmid:23457528
[35]  Monje-Rumi MM, Brandán CP, Ragone PG, Tomasini N, Lauthier JJ, Alberti D'Amato AM, et al. Trypanosoma cruzi diversity in the Gran Chaco: mixed infections and differential host distribution of TcV and TcVI. Infect Genet Evol. 2014; 29: 53–59. doi: 10.1016/j.meegid.2014.11.001. pmid:25445658
[36]  Magalh?es JB, Pontes AL, Andrade SG. Behavior of the Y and Peruvian strains of Trypanosoma cruzi in mice, after passage through various media. Mem Inst Oswaldo Cruz. 1985; 80(1): 41–50. pmid:3937013
[37]  Urrea DA, Carranza JC, Cuba CA, Gurgel-Gon?alves R, Guhl F, Schofield CJ, et al. Molecular characterisation of Trypanosoma rangeli strains isolated from Rhodnius ecuadoriensis in Peru, R. colombiensis in Colombia and R. pallescens in Panama, supports a co-evolutionary association between parasites and vectors. Infect Genet Evol. 2005; 5(2): 123–129. pmid:15639744 doi: 10.1016/j.meegid.2004.07.005
[38]  Steindel M, Pinto JC, Toma HK, Mangia RH, Ribeiro-Rodrigues R, Romanha AJ, et al. Trypanosoma rangeli (Tejera, 1920) isolated from a sylvatic rodent (Echimys dasythrix) in Santa Catarina Island, Santa Catarina State: first report of this trypanosome in southern Brazil. Mem Inst Oswaldo Cruz. 1991; 86(1): 73–79. pmid:1842404 doi: 10.1590/s0074-02761991000100012
[39]  Morales L, Romero I, Diez H, Del Portillo P, Montilla M, Nicholls S, et al. Characterization of a candidate Trypanosoma rangeli small nucleolar RNA gene and its application in a PCR-based parasite detection. Exp Parasitol. 2002; 102(2): 72–80. pmid:12706742 doi: 10.1016/s0014-4894(03)00027-4
[40]  Duffy T, Cura CI, Ramirez JC, Abate T, Cayo NM, Parrado R, et al. Analytical performance of a multiplex Real-Time PCR assay using TaqMan probes for quantification of Trypanosoma cruzi satellite DNA in blood samples. PLoS Negl Trop Dis. 2013; 7(1): e2000. doi: 10.1371/journal.pntd.0002000. pmid:23350002
[41]  Miles MA, Póvoa MM, de Souza AA, Lainson R, Shaw JJ. Some methods for the enzymic characterization of Latin-American Leishmania with particular reference to Leishmania mexicana amazonensis and subspecies of Leishmania hertigi. Trans R Soc Trop Med Hyg. 1980; 74(2): 243–252. pmid:7385303 doi: 10.1016/0035-9203(80)90253-9
[42]  Gurgel-Gon?alves R, Cura C, Schijman AG, Cuba CA. Infestation of Mauritia flexuosa palms by triatomines (Hemiptera: Reduviidae), vectors of Trypanosoma cruzi and Trypanosoma rangeli in the Brazilian savanna. Acta Trop. 2012; 121(2): 105–111. doi: 10.1016/j.actatropica.2011.10.010. pmid:22037200
[43]  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011; 28(10): 2731–2739. doi: 10.1093/molbev/msr121. pmid:21546353
[44]  Souto RP, Fernandes O, Macedo AM, Campbell DA, Zingales B. DNA markers define two major phylogenetic lineages of Trypanosoma cruzi. Mol Biochem Parasitol. 1996; 83(2): 141–152. pmid:9027747 doi: 10.1016/s0166-6851(96)02755-7
[45]  Souto RP, Zingales B. Sensitive detection and strain classification of Trypanosoma cruzi by amplification of a ribosomal RNA sequence. Mol Biochem Parasitol. 1993; 62(1): 45–52. pmid:8114825 doi: 10.1016/0166-6851(93)90176-x
[46]  Kawashita SY, Sanson GF, Fernandes O, Zingales B, Briones MR. Maximum-likelihood divergence date estimates based on rRNA gene sequences suggest two scenarios of Trypanosoma cruzi intraspecific evolution. Mol Biol Evol. 2001; 18(12): 2250–2259. pmid:11719574 doi: 10.1093/oxfordjournals.molbev.a003771
[47]  Cura CI. Desarrollo, estandarización y aplicación de herramientas de tipificación molecular de poblaciones de Trypanosoma cruzi en muestras clínicas, vectores y reservorios de la enfermedad de Chagas. PhD Thesis, Universidad de Buenos Aires. 2014.
[48]  Clark CG, Pung OJ. Host specificity of ribosomal DNA variation in sylvatic Trypanosoma cruzi from North America. Mol Biochem Parasitol. 1994; 66(1): 175–179. pmid:7984184 doi: 10.1016/0166-6851(94)90052-3
[49]  Cardinal MV, Lauricella MA, Ceballos LA, Lanati L, Marcet PL, Levin MJ, et al. Molecular epidemiology of domestic and sylvatic Trypanosoma cruzi infection in rural northwestern Argentina. Int J Parasitol. 2008; 38(13): 1533–1543. doi: 10.1016/j.ijpara.2008.04.010. pmid:18585717
[50]  Cura CI, Lucero RH, Bisio M, Oshiro E, Formichelli LB, Burgos JM et al. Trypanosoma cruzi discrete typing units in Chagas disease patients from endemic and non-endemic regions of Argentina. Parasitology. 2012; 139(4): 516–521. doi: 10.1017/S0031182011002186. pmid:22309735
[51]  Alarcón de Noya B, Díaz-Bello Z, Colmenares C, Ruiz-Guevara R, Mauriello L, Zavala-Jaspe R, et al. Large urban outbreak of orally acquired acute Chagas disease at a school in Caracas, Venezuela. J Infect Dis. 2010); 201(9): 1308–1315. doi: 10.1086/651608. pmid:20307205
[52]  Cura CI, Lattes R, Nagel C, Gimenez MJ, Blanes M, Calabuig E, et al. Early molecular diagnosis of acute Chagas disease after transplantation with organs from Trypanosoma cruzi-infected donors. Am J Transplant. 2013; 13(12): 3253–3261. doi: 10.1111/ajt.12487. pmid:24266974

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133