全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Heme Transport Capacity of LHR1 Determines the Extent of Virulence in Leishmania amazonensis

DOI: 10.1371/journal.pntd.0003804

Full-Text   Cite this paper   Add to My Lib

Abstract:

Leishmania spp. are trypanosomatid parasites that replicate intracellularly in macrophages, causing serious human morbidity and mortality throughout the world. Trypanosomatid protozoa cannot synthesize heme, so must acquire this essential cofactor from their environment. Earlier studies identified LHR1 as a Leishmania amazonensis transmembrane protein that mediates heme uptake. Null mutants of LHR1 are not viable and single knockout strains have reduced virulence, but very little is known about the properties of LHR1 directly associated with heme transport. Here, we use functional assays in Saccharomyces cerevisiae to show that specific tyrosine residues within the first three predicted transmembrane domains of LHR1 are required for efficient heme uptake. These tyrosines are unique to LHR1, consistent with the low similarity between LHR1 and its corresponding homologs in C. elegans and human. Substitution of these tyrosines in LHR1 resulted in varying degrees of heme transport inhibition, phenotypes that closely mirrored the impaired ability of L. amazonensis to replicate as intracellular amastigotes in macrophages and generate cutaneous lesions in mice. Taken together, our results imply that the mechanism for heme transport by LHR1 is distinctive and may have adapted to secure heme, a limiting cofactor, inside the host. Since LHR1 is significantly divergent from the human heme transporter HRG1, our findings lay the groundwork for selective targeting of LHR1 by small molecule antagonists.

References

[1]  Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012;7(5):e35671. doi: 10.1371/journal.pone.0035671 pmid:22693548; PubMed Central PMCID: PMC3365071.
[2]  Mohapatra S. Drug resistance in leishmaniasis: Newer developments. Tropical parasitology. 2014;4(1):4–9. doi: 10.4103/2229-5070.129142 pmid:24754020; PubMed Central PMCID: PMC3992802.
[3]  Croft SL, Olliaro P. Leishmaniasis chemotherapy—challenges and opportunities. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 2011;17(10):1478–83. doi: 10.1111/j.1469-0691.2011.03630.x pmid:21933306.
[4]  McConville MJ, Naderer T. Metabolic pathways required for the intracellular survival of Leishmania. Annu Rev Microbiol. 2011;65:543–61. doi: 10.1146/annurev-micro-090110-102913 pmid:21721937.
[5]  Landfear SM. Nutrient transport and pathogenesis in selected parasitic protozoa. Eukaryotic cell. 2011;10(4):483–93. doi: 10.1128/EC.00287-10 pmid:21216940; PubMed Central PMCID: PMC3127635.
[6]  Flannery AR, Renberg RL, Andrews NW. Pathways of iron acquisition and utilization in Leishmania. Curr Opin Microbiol. 2013;16(6):716–21. doi: 10.1016/j.mib.2013.07.018 pmid:23962817; PubMed Central PMCID: PMC3842396.
[7]  Cassat JE, Skaar EP. Iron in infection and immunity. Cell Host Microbe. 2013;13(5):509–19. doi: 10.1016/j.chom.2013.04.010 pmid:23684303; PubMed Central PMCID: PMC3676888.
[8]  Nairz M, Haschka D, Demetz E, Weiss G. Iron at the interface of immunity and infection. Frontiers in pharmacology. 2014;5:152. doi: 10.3389/fphar.2014.00152 pmid:25076907; PubMed Central PMCID: PMC4100575.
[9]  Montalbetti N, Simonin A, Kovacs G, Hediger MA. Mammalian iron transporters: families SLC11 and SLC40. Molecular aspects of medicine. 2013;34(2–3):270–87. doi: 10.1016/j.mam.2013.01.002 pmid:23506870.
[10]  Blackwell JM, Goswami T, Evans CA, Sibthorpe D, Papo N, White JK, et al. SLC11A1 (formerly NRAMP1) and disease resistance. Cell Microbiol. 2001;3(12):773–84. pmid:11736990. doi: 10.1046/j.1462-5822.2001.00150.x
[11]  Taylor MC, Kelly JM. Iron metabolism in trypanosomatids, and its crucial role in infection. Parasitology. 2010;137(6):899–917. Epub 2010/02/16. doi: S0031182009991880 [pii] doi: 10.1017/S0031182009991880 pmid:20152063.
[12]  Roach TI, Kiderlen AF, Blackwell JM. Role of inorganic nitrogen oxides and tumor necrosis factor alpha in killing Leishmania donovani amastigotes in gamma interferon-lipopolysaccharide-activated macrophages from Lshs and Lshr congenic mouse strains. Infect Immun. 1991;59(11):3935–44. pmid:1937752; PubMed Central PMCID: PMC258980.
[13]  Huynh C, Sacks DL, Andrews NW. A Leishmania amazonensis ZIP family iron transporter is essential for parasite replication within macrophage phagolysosomes. J Exp Med. 2006;203(10):2363–75. pmid:17000865. doi: 10.1084/jem.20060559
[14]  Jacques I, Andrews NW, Huynh C. Functional characterization of LIT1, the Leishmania amazonensis ferrous iron transporter. Mol Biochem Parasitol. 2010;170(1):28–36. Epub 2009/12/23. doi: S0166-6851(09)00290-4 [pii] doi: 10.1016/j.molbiopara.2009.12.003 pmid:20025906; PubMed Central PMCID: PMC2815141.
[15]  Flannery AR, Huynh C, Mittra B, Mortara RA, Andrews NW. LFR1 ferric iron reductase of Leishmania amazonensis is essential for the generation of infective parasite forms. J Biol Chem. 2011;286(26):23266–79. Epub 2011/05/12. doi: M111.229674 [pii] doi: 10.1074/jbc.M111.229674 pmid:21558274; PubMed Central PMCID: PMC3123093.
[16]  Das NK, Biswas S, Solanki S, Mukhopadhyay CK. Leishmania donovani depletes labile iron pool to exploit iron uptake capacity of macrophage for its intracellular growth. Cell Microbiol. 2009;11(1):83–94. doi: 10.1111/j.1462-5822.2008.01241.x pmid:18823384; PubMed Central PMCID: PMC2774478.
[17]  Ben-Othman R, Flannery AR, Miguel DC, Ward DM, Kaplan J, Andrews NW. Leishmania-mediated inhibition of iron export promotes parasite replication in macrophages. PLoS Pathog. 2014;10(1):e1003901. doi: 10.1371/journal.ppat.1003901 pmid:24497831; PubMed Central PMCID: PMC3907422.
[18]  Korolnek T, Hamza I. Like iron in the blood of the people: the requirement for heme trafficking in iron metabolism. Frontiers in pharmacology. 2014;5:126. doi: 10.3389/fphar.2014.00126 pmid:24926267; PubMed Central PMCID: PMC4045156.
[19]  White C, Yuan X, Schmidt PJ, Bresciani E, Samuel TK, Campagna D, et al. HRG1 is essential for heme transport from the phagolysosome of macrophages during erythrophagocytosis. Cell Metab. 2013;17(2):261–70. Epub 2013/02/12. doi: S1550-4131(13)00013-2 [pii] doi: 10.1016/j.cmet.2013.01.005 pmid:23395172; PubMed Central PMCID: PMC3582031.
[20]  Severance S, Hamza I. Trafficking of heme and porphyrins in metazoa. Chemical reviews. 2009;109(10):4596–616. doi: 10.1021/cr9001116 pmid:19764719; PubMed Central PMCID: PMC2769250.
[21]  Tripodi KE, Menendez Bravo SM, Cricco JA. Role of heme and heme-proteins in trypanosomatid essential metabolic pathways. Enzyme research. 2011;2011:873230. doi: 10.4061/2011/873230 pmid:21603276; PubMed Central PMCID: PMC3092630.
[22]  Zwerschke D, Karrie S, Jahn D, Jahn M. Leishmania major possesses a unique HemG-type protoporphyrinogen IX oxidase. Bioscience reports. 2014;34(4). doi: 10.1042/BSR20140081 pmid:24962471; PubMed Central PMCID: PMC4114063.
[23]  Galbraith RA, McElrath MJ. Heme binding to Leishmania mexicana amazonensis. Mol Biochem Parasitol. 1988;29(1):47–53. pmid:3386686. doi: 10.1016/0166-6851(88)90118-1
[24]  Campos-Salinas J, Cabello-Donayre Ma, Garc√≠a-Hern√°ndez R, P√?rez-Victoria I, Castanys S, Gamarro F, et al. A new ATP-binding cassette protein is involved in intracellular haem trafficking in Leishmania. Molecular microbiology. 2011;79(6):1430–44. doi: 10.1111/j.1365-2958.2010.07531.x pmid:21255121.
[25]  Huynh C, Yuan X, Miguel DC, Renberg RL, Protchenko O, Philpott CC, et al. Heme uptake by Leishmania amazonensis is mediated by the transmembrane protein LHR1. PLoS Pathog. 2012;8(7):e1002795. Epub 2012/07/19. doi: 10.1371/journal.ppat.1002795 PPATHOGENS-D-11-02518 [pii]. pmid:22807677; PubMed Central PMCID: PMC3395602.
[26]  Miguel DC, Flannery AR, Mittra B, Andrews NW. Heme uptake mediated by LHR1 is essential for Leishmania amazonensis virulence. Infect Immun. 2013;81(10):3620–6. doi: 10.1128/IAI.00687-13 pmid:23876801; PubMed Central PMCID: PMC3811768.
[27]  Kelly JX, Ignatushchenko MV, Bouwer HG, Peyton DH, Hinrichs DJ, Winter RW, et al. Antileishmanial drug development: exploitation of parasite heme dependency. Mol Biochem Parasitol. 2003;126(1):43–9. pmid:12554083. doi: 10.1016/s0166-6851(02)00248-7
[28]  Crisp RJ, Pollington A, Galea C, Jaron S, Yamaguchi-Iwai Y, Kaplan J. Inhibition of heme biosynthesis prevents transcription of iron uptake genes in yeast. J Biol Chem. 2003;278(46):45499–506. doi: 10.1074/jbc.M307229200 pmid:12928433.
[29]  Ito H, Fukuda Y, Murata K, Kimura A. Transformation of intact yeast cells treated with alkali cations. Journal of bacteriology. 1983;153(1):163–8. pmid:6336730; PubMed Central PMCID: PMC217353.
[30]  Yuan X, Protchenko O, Philpott CC, Hamza I. Topologically conserved residues direct heme transport in HRG-1-related proteins. J Biol Chem. 2012;287(7):4914–24. doi: 10.1074/jbc.M111.326785 pmid:22174408; PubMed Central PMCID: PMCPMC3281596.
[31]  Aderem A. Signal transduction and the actin cytoskeleton: the roles of MARCKS and profilin. TIBS. 1992;17:438–43. pmid:1455513 doi: 10.1016/0968-0004(92)90016-3
[32]  Kapler GM, Coburn CM, Beverley SM. Stable transfection of the human parasite Leishmania major delineates a 30-kilobase region sufficient for extrachromosomal replication and expression. Molecular and cellular biology. 1990;10(3):1084–94. pmid:2304458; PubMed Central PMCID: PMC360971.
[33]  Rabhi I, Rabhi S, Ben-Othman R, Rasche A, Daskalaki A, Trentin B, et al. Transcriptomic signature of Leishmania infected mice macrophages: a metabolic point of view. PLoS Negl Trop Dis. 2012;6(8):e1763. doi: 10.1371/journal.pntd.0001763 pmid:22928052; PubMed Central PMCID: PMC3424254.
[34]  Titus RG, Marchand M, Boon T, Louis JA. A limiting dilution assay for quantifying Leishmania major in tissues of infected mice. Parasite Immunol. 1985;7(5):545–55. pmid:3877902. doi: 10.1111/j.1365-3024.1985.tb00098.x
[35]  Wilks A, Burkhard KA. Heme and virulence: how bacterial pathogens regulate, transport and utilize heme. Natural product reports. 2007;24(3):511–22. doi: 10.1039/b604193k pmid:17534527.
[36]  Tong Y, Guo M. Bacterial heme-transport proteins and their heme-coordination modes. Archives of biochemistry and biophysics. 2009;481(1):1–15. doi: 10.1016/j.abb.2008.10.013 pmid:18977196; PubMed Central PMCID: PMC2683585.
[37]  Protchenko O, Shakoury-Elizeh M, Keane P, Storey J, Androphy R, Philpott CC. Role of PUG1 in inducible porphyrin and heme transport in Saccharomyces cerevisiae. Eukaryotic cell. 2008;7(5):859–71. doi: 10.1128/EC.00414-07 pmid:18326586; PubMed Central PMCID: PMC2394968.
[38]  Merz S, Westermann B. Genome-wide deletion mutant analysis reveals genes required for respiratory growth, mitochondrial genome maintenance and mitochondrial protein synthesis in Saccharomyces cerevisiae. Genome Biol. 2009;10(9):R95. doi: 10.1186/gb-2009-10-9-r95 pmid:19751518; PubMed Central PMCID: PMC2768984.
[39]  Rao AU, Carta LK, Lesuisse E, Hamza I. Lack of heme synthesis in a free-living eukaryote. Proc Natl Acad Sci U S A. 2005;102(12):4270–5. doi: 10.1073/pnas.0500877102 pmid:15767563; PubMed Central PMCID: PMC555530.
[40]  Bangs JD, Uyetake L, Brickman MJ, Balber AE, Boothroyd JC. Molecular cloning and cellular localization of a BiP homologue in Trypanosoma brucei. Divergent ER retention signals in a lower eukaryote. J Cell Sci. 1993;105 (Pt 4):1101–13. pmid:8227199.
[41]  Rajagopal A, Rao AU, Amigo J, Tian M, Upadhyay SK, Hall C, et al. Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins. Nature. 2008;453(7198):1127–31. pmid:18418376. doi: 10.1038/nature06934.
[42]  Quigley JG, Yang Z, Worthington MT, Phillips JD, Sabo KM, Sabath DE, et al. Identification of a human heme exporter that is essential for erythropoiesis. Cell. 2004;118(6):757–66. Epub 2004/09/17. doi: 10.1016/j.cell.2004.08.014 S0092867404007512 [pii]. pmid:15369674.
[43]  Grigg JC, Mao CX, Murphy ME. Iron-coordinating tyrosine is a key determinant of NEAT domain heme transfer. J Mol Biol. 2011;413(3):684–98. doi: 10.1016/j.jmb.2011.08.047 pmid:21893067.
[44]  O'Callaghan KM, Ayllon V, O'Keeffe J, Wang Y, Cox OT, Loughran G, et al. Heme-binding protein HRG-1 is induced by insulin-like growth factor I and associates with the vacuolar H+-ATPase to control endosomal pH and receptor trafficking. J Biol Chem. 2010;285(1):381–91. doi: 10.1074/jbc.M109.063248 pmid:19875448; PubMed Central PMCID: PMC2805445.
[45]  Cupello MP, Souza CF, Buchensky C, Soares JB, Laranja GA, Coelho MG, et al. The heme uptake process in Trypanosoma cruzi epimastigotes is inhibited by heme analogues and by inhibitors of ABC transporters. Acta tropica. 2011;120(3):211–8. doi: 10.1016/j.actatropica.2011.08.011 pmid:21903090.
[46]  Lara FA, Sant'anna C, Lemos D, Laranja GA, Coelho MG, Reis Salles I, et al. Heme requirement and intracellular trafficking in Trypanosoma cruzi epimastigotes. Biochem Biophys Res Commun. 2007;355(1):16–22. doi: 10.1016/j.bbrc.2006.12.238 pmid:17292866.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133