全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Biology  2015 

Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex

DOI: 10.1371/journal.pbio.1002222

Full-Text   Cite this paper   Add to My Lib

Abstract:

The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC) of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70–200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys’ behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators.

References

[1]  Shenhav A, Botvinick MM, Cohen JD. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron. 2013 Jul 24;79(2):217–40. doi: 10.1016/j.neuron.2013.07.007. pmid:23889930
[2]  London M, Roth A, Beeren L, Hausser M, Latham PE. Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex. Nature. 2010 Jul 1;466(7302):123–7. doi: 10.1038/nature09086. pmid:20596024
[3]  Brunel N, Wang XJ. Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. Journal of computational neuroscience. 2001 Jul-Aug;11(1):63–85. pmid:11524578 doi: 10.1007/s10827-014-0506-8
[4]  Mongillo G, Barak O, Tsodyks M. Synaptic theory of working memory. Science (New York, NY. 2008 Mar 14;319(5869):1543–6. doi: 10.1126/science.1150769
[5]  Rolls ET, Grabenhorst F, Deco G. Decision-making, errors, and confidence in the brain. Journal of neurophysiology. 2010 Nov;104(5):2359–74. doi: 10.1152/jn.00571.2010. pmid:20810685
[6]  Bekolay T, Laubach M, Eliasmith C. A spiking neural integrator model of the adaptive control of action by the medial prefrontal cortex. J Neurosci. 2014 Jan 29;34(5):1892–902. doi: 10.1523/JNEUROSCI.2421-13.2014. pmid:24478368
[7]  Cain N, Shea-Brown E. Computational models of decision making: integration, stability, and noise. Current opinion in neurobiology. 2012 Dec;22(6):1047–53. doi: 10.1016/j.conb.2012.04.013. pmid:22591667
[8]  Churchland AK, Kiani R, Chaudhuri R, Wang XJ, Pouget A, Shadlen MN. Variance as a signature of neural computations during decision making. Neuron. 2011 Feb 24;69(4):818–31. doi: 10.1016/j.neuron.2010.12.037. pmid:21338889
[9]  Lim S, Goldman MS. Balanced cortical microcircuitry for maintaining information in working memory. Nature neuroscience. 2013 Sep;16(9):1306–14. doi: 10.1038/nn.3492. pmid:23955560
[10]  Kim JN, Shadlen MN. Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nature neuroscience. 1999 Feb;2(2):176–85. pmid:10195203
[11]  Rothé M, Quilodran R, Sallet J, Procyk E. Coordination of high gamma activity in anterior cingulate and lateral prefrontal cortical areas during adaptation. J Neurosci. 2011 Aug 3;31(31):11110–7. doi: 10.1523/JNEUROSCI.1016-11.2011. pmid:21813672
[12]  Bialek W, Rieke F, de Ruyter van Steveninck RR, Warland D. Reading a neural code. Science (New York, NY. 1991 Jun 28;252(5014):1854–7. doi: 10.1126/science.2063199
[13]  Aronov D, Reich DS, Mechler F, Victor JD. Neural coding of spatial phase in V1 of the macaque monkey. Journal of neurophysiology. 2003 Jun;89(6):3304–27. pmid:12612048 doi: 10.1152/jn.00826.2002
[14]  Rudolph M, Destexhe A. Tuning neocortical pyramidal neurons between integrators and coincidence detectors. Journal of computational neuroscience. 2003 May-Jun;14(3):239–51. pmid:12766426
[15]  van Wingerden M, Vinck M, Lankelma JV, Pennartz CM. Learning-associated gamma-band phase-locking of action-outcome selective neurons in orbitofrontal cortex. J Neurosci. 2010 Jul 28;30(30):10025–38. doi: 10.1523/JNEUROSCI.0222-10.2010. pmid:20668187
[16]  Totah NK, Jackson ME, Moghaddam B. Preparatory Attention Relies on Dynamic Interactions between Prelimbic Cortex and Anterior Cingulate Cortex. Cereb Cortex. 2012 Mar 14(3):729–38. doi: 10.1093/cercor/bhs057
[17]  Narayanan NS, Cavanagh JF, Frank MJ, Laubach M. Common medial frontal mechanisms of adaptive control in humans and rodents. Nature neuroscience. 2013 Dec;16(12):1888–95. doi: 10.1038/nn.3549. pmid:24141310
[18]  Buschman TJ, Denovellis EL, Diogo C, Bullock D, Miller EK. Synchronous oscillatory neural ensembles for rules in the prefrontal cortex. Neuron. 2012 Nov 21;76(4):838–46. doi: 10.1016/j.neuron.2012.09.029. pmid:23177967
[19]  Benchenane K, Peyrache A, Khamassi M, Tierney PL, Gioanni Y, Battaglia FP, et al. Coherent theta oscillations and reorganization of spike timing in the hippocampal- prefrontal network upon learning. Neuron. 2010 Jun 24;66(6):921–36. doi: 10.1016/j.neuron.2010.05.013. pmid:20620877
[20]  Sakamoto K, Mushiake H, Saito N, Aihara K, Yano M, Tanji J. Discharge synchrony during the transition of behavioral goal representations encoded by discharge rates of prefrontal neurons. Cereb Cortex. 2008 Sep;18(9):2036–45. doi: 10.1093/cercor/bhm234. pmid:18252744
[21]  Womelsdorf T, Ardid S, Everling S, Valiante TA. Burst Firing Synchronizes Prefrontal and Anterior Cingulate Cortex during Attentional Control. Curr Biol. 22014 Nov 17;24(22):2613–21. doi: 10.1016/j.cub.2014.09.046
[22]  Shmiel T, Drori R, Shmiel O, Ben-Shaul Y, Nadasdy Z, Shemesh M, et al. Neurons of the cerebral cortex exhibit precise interspike timing in correspondence to behavior. Proceedings of the National Academy of Sciences of the United States of America. 2005 Dec 20;102(51):18655–7. pmid:16339894 doi: 10.1073/pnas.0509346102
[23]  Stokes MG, Kusunoki M, Sigala N, Nili H, Gaffan D, Duncan J. Dynamic coding for cognitive control in prefrontal cortex. Neuron. 2013 Apr 24;78(2):364–75. doi: 10.1016/j.neuron.2013.01.039. pmid:23562541
[24]  Panzeri S, Brunel N, Logothetis NK, Kayser C. Sensory neural codes using multiplexed temporal scales. Trends Neurosci. 2010 Mar;33(3):111–20. doi: 10.1016/j.tins.2009.12.001. pmid:20045201
[25]  Oram MW, Hatsopoulos NG, Richmond BJ, Donoghue JP. Excess synchrony in motor cortical neurons provides redundant direction information with that from coarse temporal measures. Journal of neurophysiology. 2001 Oct;86(4):1700–16. pmid:11600633
[26]  Chicharro D, Kreuz T, Andrzejak RG. What can spike train distances tell us about the neural code? Journal of neuroscience methods. 2011 Jul 15;199(1):146–65. doi: 10.1016/j.jneumeth.2011.05.002. pmid:21586303
[27]  Carney LH, Zilany MS, Huang NJ, Abrams KS, Idrobo F. Suboptimal use of neural information in a mammalian auditory system. J Neurosci. 2014 Jan 22;34(4):1306–13. doi: 10.1523/JNEUROSCI.3031-13.2014. pmid:24453321
[28]  Luna R, Hernandez A, Brody CD, Romo R. Neural codes for perceptual discrimination in primary somatosensory cortex. Nature neuroscience. 2005 Sep;8(9):1210–9. pmid:16056223 doi: 10.1038/nn1513
[29]  Quilodran R, Rothe M, Procyk E. Behavioral shifts and action valuation in the anterior cingulate cortex. Neuron. 2008 Jan 24;57(2):314–25. doi: 10.1016/j.neuron.2007.11.031. pmid:18215627
[30]  Ullsperger M, Danielmeier C, Jocham G. Neurophysiology of performance monitoring and adaptive behavior. Physiological reviews. 2014 Jan;94(1):35–79. doi: 10.1152/physrev.00041.2012. pmid:24382883
[31]  Khamassi M, Enel P, Dominey PF, Procyk E. Medial prefrontal cortex and the adaptive regulation of reinforcement learning parameters. Progress in brain research. 2013;202:441–64. doi: 10.1016/B978-0-444-62604-2.00022-8. pmid:23317844
[32]  Dipoppa M, Gutkin BS. Flexible frequency control of cortical oscillations enables computations required for working memory. Proceedings of the National Academy of Sciences of the United States of America. 2013 Jul 30;110(31):12828–33. doi: 10.1073/pnas.1303270110. pmid:23858465
[33]  Gutkin BS, Laing CR, Colby CL, Chow CC, Ermentrout GB. Turning on and off with excitation: the role of spike-timing asynchrony and synchrony in sustained neural activity. Journal of computational neuroscience. 2001 Sep-Oct;11(2):121–34. pmid:11717529
[34]  Dipoppa M, Gutkin BS. Correlations in background activity control persistent state stability and allow execution of working memory tasks. Frontiers in computational neuroscience. 2013;7:139. doi: 10.3389/fncom.2013.00139. pmid:24155714
[35]  Victor JD, Purpura KP. Nature and precision of temporal coding in visual cortex: a metric-space analysis. Journal of neurophysiology. 1996 Aug;76(2):1310–26. pmid:8871238
[36]  Arsiero M, Luscher HR, Lundstrom BN, Giugliano M. The impact of input fluctuations on the frequency-current relationships of layer 5 pyramidal neurons in the rat medial prefrontal cortex. J Neurosci. 2007 Mar 21;27(12):3274–84. pmid:17376988 doi: 10.1523/jneurosci.4937-06.2007
[37]  Ostojic S. Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons. Nature neuroscience. 2014 Apr;17(4):594–600. doi: 10.1038/nn.3658. pmid:24561997
[38]  Brunel N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of computational neuroscience. 2000 May-Jun;8(3):183–208. pmid:10809012 doi: 10.1016/s0925-2312(00)00179-x
[39]  Farkhooi F, Muller E, Nawrot MP. Adaptation reduces variability of the neuronal population code. Physical review. 2011 May;83(5 Pt 1):050905. pmid:21728481 doi: 10.1103/physreve.83.050905
[40]  Litwin-Kumar A, Doiron B. Slow dynamics and high variability in balanced cortical networks with clustered connections. Nature neuroscience. 2012 Nov;15(11):1498–505. doi: 10.1038/nn.3220. pmid:23001062
[41]  Procyk E, Tanaka YL, Joseph JP. Anterior cingulate activity during routine and non-routine sequential behaviors in macaques. Nature neuroscience. 2000 May;3(5):502–8. pmid:10769392
[42]  Park IM, Meister ML, Huk AC, Pillow JW. Encoding and decoding in parietal cortex during sensorimotor decision-making. Nature neuroscience. 2014 Oct;17(10):1395–403. doi: 10.1038/nn.3800. pmid:25174005
[43]  Pozzorini C, Naud R, Mensi S, Gerstner W. Temporal whitening by power-law adaptation in neocortical neurons. Nature neuroscience. 2013 Jul;16(7):942–8. doi: 10.1038/nn.3431. pmid:23749146
[44]  Mongillo G, Hansel D, van Vreeswijk C. Bistability and spatiotemporal irregularity in neuronal networks with nonlinear synaptic transmission. Physical review letters. 2012 Apr 13;108(15):158101. pmid:22587287 doi: 10.1103/physrevlett.108.158101
[45]  Machens CK, Schutze H, Franz A, Kolesnikova O, Stemmler MB, Ronacher B, et al. Single auditory neurons rapidly discriminate conspecific communication signals. Nature neuroscience. 2003 Apr;6(4):341–2. pmid:12652305 doi: 10.1038/nn1036
[46]  Murray JD, Bernacchia A, Freedman DJ, Romo R, Wallis JD, Cai X, et al. A hierarchy of intrinsic timescales across primate cortex. Nature neuroscience. 2014 Dec;17(12):1661–3. doi: 10.1038/nn.3862. pmid:25383900
[47]  Roussin AT, D'Agostino AE, Fooden AM, Victor JD, Di Lorenzo PM. Taste coding in the nucleus of the solitary tract of the awake, freely licking rat. J Neurosci. 2012 Aug 1;32(31):10494–506. doi: 10.1523/JNEUROSCI.1856-12.2012. pmid:22855799
[48]  Womelsdorf T, Johnston K, Vinck M, Everling S. Theta-activity in anterior cingulate cortex predicts task rules and their adjustments following errors. Proceedings of the National Academy of Sciences of the United States of America. 2010 Mar 16;107(11):5248–53. doi: 10.1073/pnas.0906194107. pmid:20194767
[49]  Reimann MW, Anastassiou CA, Perin R, Hill SL, Markram H, Koch C. A biophysically detailed model of neocortical local field potentials predicts the critical role of active membrane currents. Neuron. 2013 Jul 24;79(2):375–90. doi: 10.1016/j.neuron.2013.05.023. pmid:23889937
[50]  Chase SM, Young ED. First-spike latency information in single neurons increases when referenced to population onset. Proceedings of the National Academy of Sciences of the United States of America. 2007 Mar 20;104(12):5175–80. pmid:17360369 doi: 10.1073/pnas.0610368104
[51]  Shmiel T, Drori R, Shmiel O, Ben-Shaul Y, Nadasdy Z, Shemesh M, et al. Temporally precise cortical firing patterns are associated with distinct action segments. Journal of neurophysiology. 2006 Nov;96(5):2645–52. pmid:16885517 doi: 10.1152/jn.00798.2005
[52]  Gjorgjieva J, Clopath C, Audet J, Pfister JP. A triplet spike-timing-dependent plasticity model generalizes the Bienenstock-Cooper-Munro rule to higher-order spatiotemporal correlations. Proceedings of the National Academy of Sciences of the United States of America. 2011 Nov 29;108(48):19383–8. doi: 10.1073/pnas.1105933108. pmid:22080608
[53]  Michelet T, Bioulac B, Langbour N, Goillandeau M, Guehl D, Burbaud P. Electrophysiological Correlates of a Versatile Executive Control System in the Monkey Anterior Cingulate Cortex. Cereb Cortex. 2015 Jan 28. Epub ahead of print. doi: 10.1093/cercor/bhv004
[54]  Hayden BY, Pearson JM, Platt ML. Neuronal basis of sequential foraging decisions in a patchy environment. Nature neuroscience. 2011 Jul;14(7):933–9. doi: 10.1038/nn.2856. pmid:21642973
[55]  Sheth SA, Mian MK, Patel SR, Asaad WF, Williams ZM, Dougherty DD, et al. Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation. Nature. 2012 Aug 9;488(7410):218–21. doi: 10.1038/nature11239. pmid:22722841
[56]  Karlsson MP, Tervo DG, Karpova AY. Network resets in medial prefrontal cortex mark the onset of behavioral uncertainty. Science (New York, NY. 2012 Oct 5;338(6103):135–9. doi: 10.1126/science.1226518
[57]  Durstewitz D, Vittoz NM, Floresco SB, Seamans JK. Abrupt Transitions between Prefrontal Neural Ensemble States Accompany Behavioral Transitions during Rule Learning. Neuron. 2010 May;66:438–48. doi: 10.1016/j.neuron.2010.03.029. pmid:20471356
[58]  Balaguer-Ballester E, Lapish CC, Seamans JK, Durstewitz D. Attracting dynamics of frontal cortex ensembles during memory-guided decision-making. PLoS Comput Biol. 2011 May;7(5):e1002057. doi: 10.1371/journal.pcbi.1002057. pmid:21625577
[59]  Britten KH, Newsome WT, Shadlen MN, Celebrini S, Movshon JA. A relationship between behavioral choice and the visual responses of neurons in macaque MT. Visual neuroscience. 1996 Jan-Feb;13(1):87–100. pmid:8730992 doi: 10.1017/s095252380000715x
[60]  Kepecs A, Uchida N, Zariwala HA, Mainen ZF. Neural correlates, computation and behavioural impact of decision confidence. Nature. 2008 Sep 11;455(7210):227–31. doi: 10.1038/nature07200. pmid:18690210
[61]  Huk AC, Shadlen MN. Neural activity in macaque parietal cortex reflects temporal integration of visual motion signals during perceptual decision making. J Neurosci. 2005 Nov 9;25(45):10420–36. pmid:16280581 doi: 10.1523/jneurosci.4684-04.2005
[62]  Ganguli S, Bisley JW, Roitman JD, Shadlen MN, Goldberg ME, Miller KD. One-dimensional dynamics of attention and decision making in LIP. Neuron. 2008 Apr 10;58(1):15–25. doi: 10.1016/j.neuron.2008.01.038. pmid:18400159
[63]  Szatmary B, Izhikevich EM. Spike-timing theory of working memory. PLoS Comput. Biol. 2010;6(8):e1000879. doi: 10.1371/journal.pcbi.1000879. pmid:20808877
[64]  Saal HP, Vijayakumar S, Johansson RS. Information about Complex Fingertip Parameters in Individual Human Tactile Afferent Neurons. The Journal of Neuroscience. 2009;29(25):8022–31. doi: 10.1523/JNEUROSCI.0665-09.2009. pmid:19553442

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133