全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Biology  2015 

Neocortical Rebound Depolarization Enhances Visual Perception

DOI: 10.1371/journal.pbio.1002231

Full-Text   Cite this paper   Add to My Lib

Abstract:

Animals are constantly exposed to the time-varying visual world. Because visual perception is modulated by immediately prior visual experience, visual cortical neurons may register recent visual history into a specific form of offline activity and link it to later visual input. To examine how preceding visual inputs interact with upcoming information at the single neuron level, we designed a simple stimulation protocol in which a brief, orientated flashing stimulus was subsequently coupled to visual stimuli with identical or different features. Using in vivo whole-cell patch-clamp recording and functional two-photon calcium imaging from the primary visual cortex (V1) of awake mice, we discovered that a flash of sinusoidal grating per se induces an early, transient activation as well as a long-delayed reactivation in V1 neurons. This late response, which started hundreds of milliseconds after the flash and persisted for approximately 2 s, was also observed in human V1 electroencephalogram. When another drifting grating stimulus arrived during the late response, the V1 neurons exhibited a sublinear, but apparently increased response, especially to the same grating orientation. In behavioral tests of mice and humans, the flashing stimulation enhanced the detection power of the identically orientated visual stimulation only when the second stimulation was presented during the time window of the late response. Therefore, V1 late responses likely provide a neural basis for admixing temporally separated stimuli and extracting identical features in time-varying visual environments.

References

[1]  Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex. 1991; 1: 1–47. pmid:1822724 doi: 10.1093/cercor/1.1.1
[2]  Purves D, Lotto RB, Williams SM, Nundy S, Yang Z. Why we see things the way we do: evidence for a wholly empirical strategy of vision. Philos Trans R Soc Lond B Biol Sci. 2001; 356: 285–297. pmid:11316481 doi: 10.1098/rstb.2000.0772
[3]  Nikolic D, Hausler S, Singer W, Maass W. Distributed fading memory for stimulus properties in the primary visual cortex. PLoS Biol. 2009; 7: e1000260. doi: 10.1371/journal.pbio.1000260. pmid:20027205
[4]  Shuler MG, Bear MF. Reward timing in the primary visual cortex. Science. 2006; 311: 1606–1609. pmid:16543459 doi: 10.1126/science.1123513
[5]  Chubykin AA, Roach EB, Bear MF, Shuler MG. A cholinergic mechanism for reward timing within primary visual cortex. Neuron. 2013; 77: 723–735. doi: 10.1016/j.neuron.2012.12.039. pmid:23439124
[6]  Han F, Caporale N, Dan Y. Reverberation of recent visual experience in spontaneous cortical waves. Neuron. 2008; 60: 321–327. doi: 10.1016/j.neuron.2008.08.026. pmid:18957223
[7]  Liang F, Xiong XR, Zingg B, Ji XY, Zhang LI, et al. Sensory cortical control of a visually induced arrest behavior via corticotectal projections. Neuron. 2015; in press. doi: 10.1016/j.neuron.2015.03.048
[8]  Xu W, Huang X, Takagaki K, Wu JY. Compression and reflection of visually evoked cortical waves. Neuron. 2007; 55: 119–129. pmid:17610821 doi: 10.1016/j.neuron.2007.06.016
[9]  Benucci A, Frazor RA, Carandini M. Standing waves and traveling waves distinguish two circuits in visual cortex. Neuron. 2007; 55: 103–117. pmid:17610820 doi: 10.1016/j.neuron.2007.06.017
[10]  Dick AO. Iconic memory and its relation to perceptual processing and other memory mechanisms. Percep Psychophys. 1974; 16: 575–596. doi: 10.3758/bf03198590
[11]  Averbach E, Sperling G. Short-term storage of information in vision. In: Cherry C, editor. Information Theory. London: Butterworth; 1961.
[12]  Super H, Spekreijse H, Lamme VA. A neural correlate of working memory in the monkey primary visual cortex. Science. 2001; 293: 120–124. pmid:11441187 doi: 10.1126/science.1060496
[13]  Munneke J, Heslenfeld DJ, Theeuwes J. Spatial working memory effects in early visual cortex. Brain Cogn. 2010; 72: 368–377. doi: 10.1016/j.bandc.2009.11.001. pmid:19962813
[14]  Harrison SA, Tong F. Decoding reveals the contents of visual working memory in early visual areas. Nature. 2009; 458: 632–635. doi: 10.1038/nature07832. pmid:19225460
[15]  Amit DJ. The Hebbian paradigm reintegrated: local reverberations as internal representations. Behav Brain Sci. 1995; 18: 617–657. doi: 10.1017/s0140525x00040164
[16]  Wang XJ. Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci. 2001; 24: 455–463. pmid:11476885 doi: 10.1016/s0166-2236(00)01868-3
[17]  Ringach DL, Hawken MJ, Shapley R. Dynamics of orientation tuning in macaque primary visual cortex. Nature. 1997; 387: 281–284. pmid:9153392 doi: 10.1038/387281a0
[18]  Benucci A, Ringach DL, Carandini M. Coding of stimulus sequences by population responses in visual cortex. Nat Neurosci. 2009; 12: 1317–1324. doi: 10.1038/nn.2398. pmid:19749748
[19]  Brascamp JW, Knapen TH, Kanai R, van Ee R, van den Berg AV. Flash suppression and flash facilitation in binocular rivalry. J Vis. 2007; 7: 12 11–12. pmid:17997654 doi: 10.1167/7.12.12
[20]  Fischer J, Whitney D. Serial dependence in visual perception. Nat Neurosci. 2014; 17: 738–743. doi: 10.1038/nn.3689. pmid:24686785
[21]  Maljkovic V, Nakayama K. Priming of pop-out: I. Role of features. Mem Cognit. 1994; 22: 657–672. pmid:7808275 doi: 10.3758/bf03209251
[22]  Kahneman D, Treisman A, Gibbs BJ. The reviewing of object files: object-specific integration of information. Cogn Psychol. 1992; 24: 175–219. pmid:1582172 doi: 10.1016/0010-0285(92)90007-o
[23]  Boynton GM, Finney EM. Orientation-specific adaptation in human visual cortex. J Neurosci. 2003; 23: 8781–8787. pmid:14507978
[24]  Weigelt S, Muckli L, Kohler A. Functional magnetic resonance adaptation in visual neuroscience. Rev Neurosci. 2008; 19: 363–380. pmid:19145990 doi: 10.1515/revneuro.2008.19.4-5.363
[25]  Movshon JA, Lennie P. Pattern-selective adaptation in visual cortical neurones. Nature. 1979; 278: 850–852. pmid:440411 doi: 10.1038/278850a0
[26]  Haider B, Krause MR, Duque A, Yu Y, Touryan J, et al. Synaptic and network mechanisms of sparse and reliable visual cortical activity during nonclassical receptive field stimulation. Neuron. 2010; 65: 107–121. doi: 10.1016/j.neuron.2009.12.005. pmid:20152117
[27]  Niell CM, Stryker MP. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron. 2010; 65: 472–479. doi: 10.1016/j.neuron.2010.01.033. pmid:20188652
[28]  Sakata S, Harris KD. Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron. 2009; 64: 404–418. doi: 10.1016/j.neuron.2009.09.020. pmid:19914188
[29]  de Kock CP, Bruno RM, Spors H, Sakmann B. Layer- and cell-type-specific suprathreshold stimulus representation in rat primary somatosensory cortex. J Physiol. 2007; 581: 139–154. pmid:17317752 doi: 10.1113/jphysiol.2006.124321
[30]  Crochet S, Poulet JF, Kremer Y, Petersen CC. Synaptic mechanisms underlying sparse coding of active touch. Neuron. 2011; 69: 1160–1175. doi: 10.1016/j.neuron.2011.02.022. pmid:21435560
[31]  Kendall MG, Stuart A, Ord JK, Arnold SF, O'Hagan A. Kendall's advanced theory of statistics. New York: Halsted Press; 1994.
[32]  Bedard C, Kroger H, Destexhe A. Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophys J. 2004; 86: 1829–1842. pmid:14990509 doi: 10.1016/s0006-3495(04)74250-2
[33]  Mohajerani MH, Chan AW, Mohsenvand M, LeDue J, Liu R, et al. Spontaneous cortical activity alternates between motifs defined by regional axonal projections. Nat Neurosci. 2013; 16: 1426–1435. doi: 10.1038/nn.3499. pmid:23974708
[34]  Herbert H, Jasper MD. Report of the committee on methods of clinical examination in electroencephalography 1957. Electroencephalography Clin Neurophysiol. 1957; 10: 370–375. doi: 10.1016/0013-4694(58)90053-1
[35]  Sachidhanandam S, Sreenivasan V, Kyriakatos A, Kremer Y, Petersen CC. Membrane potential correlates of sensory perception in mouse barrel cortex. Nat Neurosci. 2013; 16: 1671–1677. doi: 10.1038/nn.3532. pmid:24097038
[36]  Volgushev M, Vidyasagar TR, Pei X. Dynamics of the orientation tuning of postsynaptic potentials in the cat visual cortex. Vis Neurosci. 1995; 12: 621–628. pmid:8527364 doi: 10.1017/s0952523800008919
[37]  Pei X, Vidyasagar TR, Volgushev M, Creutzfeldt OD. Receptive field analysis and orientation selectivity of postsynaptic potentials of simple cells in cat visual cortex. J Neurosci. 1994; 14: 7130–7140. pmid:7965103
[38]  Hubel DH, Wiesel TN. Receptive fields of single neurones in the cat's striate cortex. J Physiol. 1959; 148: 574–591. pmid:14403679 doi: 10.1113/jphysiol.1959.sp006308
[39]  Drager UC. Receptive fields of single cells and topography in mouse visual cortex. J Comp Neurol. 1975; 160: 269–290. pmid:1112925 doi: 10.1002/cne.901600302
[40]  Metin C, Godement P, Imbert M. The primary visual cortex in the mouse: receptive field properties and functional organization. Exp Brain Res. 1988; 69: 594–612. pmid:3371440 doi: 10.1007/bf00247312
[41]  Niell CM, Stryker MP. Highly selective receptive fields in mouse visual cortex. J Neurosci. 2008; 28: 7520–7536. doi: 10.1523/JNEUROSCI.0623-08.2008. pmid:18650330
[42]  Liu BH, Li YT, Ma WP, Pan CJ, Zhang LI, et al. Broad inhibition sharpens orientation selectivity by expanding input dynamic range in mouse simple cells. Neuron. 2011; 71: 542–554. doi: 10.1016/j.neuron.2011.06.017. pmid:21835349
[43]  Priebe NJ, Ferster D. Inhibition, spike threshold, and stimulus selectivity in primary visual cortex. Neuron. 2008; 57: 482–497. doi: 10.1016/j.neuron.2008.02.005. pmid:18304479
[44]  Ferster D, Miller KD. Neural mechanisms of orientation selectivity in the visual cortex. Annu Rev Neurosci. 2000; 23: 441–471. pmid:10845071 doi: 10.1146/annurev.neuro.23.1.441
[45]  Benucci A, Saleem AB, Carandini M. Adaptation maintains population homeostasis in primary visual cortex. Nat Neurosci. 2013; 16: 724–729. doi: 10.1038/nn.3382. pmid:23603708
[46]  Dragoi V, Rivadulla C, Sur M. Foci of orientation plasticity in visual cortex. Nature. 2001; 411: 80–86. pmid:11333981 doi: 10.1038/35075070
[47]  Prusky GT, Alam NM, Beekman S, Douglas RM. Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest Ophthalmol Vis Sci. 2004; 45: 4611–4616. pmid:15557474 doi: 10.1167/iovs.04-0541
[48]  Binzegger T, Douglas RJ, Martin KA. A quantitative map of the circuit of cat primary visual cortex. J Neurosci. 2004; 24: 8441–8453. pmid:15456817 doi: 10.1523/jneurosci.1400-04.2004
[49]  Lefort S, Tomm C, Floyd Sarria JC, Petersen CC. The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron. 2009; 61: 301–316. doi: 10.1016/j.neuron.2008.12.020. pmid:19186171
[50]  Jia H, Rochefort NL, Chen X, Konnerth A. Dendritic organization of sensory input to cortical neurons in vivo. Nature. 2010; 464: 1307–1312. doi: 10.1038/nature08947. pmid:20428163
[51]  Ko H, Hofer SB, Pichler B, Buchanan KA, Sjostrom PJ, et al. Functional specificity of local synaptic connections in neocortical networks. Nature. 2011; 473: 87–91. doi: 10.1038/nature09880. pmid:21478872
[52]  Hofer SB, Ko H, Pichler B, Vogelstein J, Ros H, et al. Differential connectivity and response dynamics of excitatory and inhibitory neurons in visual cortex. Nat Neurosci. 2011; 14: 1045–1052. doi: 10.1038/nn.2876. pmid:21765421
[53]  Li Y, Lu H, Cheng PL, Ge S, Xu H, et al. Clonally related visual cortical neurons show similar stimulus feature selectivity. Nature. 2012; 486: 118–121. doi: 10.1038/nature11110. pmid:22678292
[54]  Yu YC, Bultje RS, Wang X, Shi SH. Specific synapses develop preferentially among sister excitatory neurons in the neocortex. Nature. 2009; 458: 501–504. doi: 10.1038/nature07722. pmid:19204731
[55]  Ohtsuki G, Nishiyama M, Yoshida T, Murakami T, Histed M, et al. Similarity of visual selectivity among clonally related neurons in visual cortex. Neuron. 2012; 75: 65–72. doi: 10.1016/j.neuron.2012.05.023. pmid:22794261
[56]  Song S, Sjostrom PJ, Reigl M, Nelson S, Chklovskii DB. Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 2005; 3: e68. pmid:15737062 doi: 10.1371/journal.pbio.0030068
[57]  Sadovsky AJ, MacLean JN. Mouse visual neocortex supports multiple stereotyped patterns of microcircuit activity. J Neurosci. 2014; 34: 7769–7777. doi: 10.1523/JNEUROSCI.0169-14.2014. pmid:24899701
[58]  Guillery RW, Sherman SM. Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron. 2002; 33: 163–175. pmid:11804565 doi: 10.1016/s0896-6273(01)00582-7
[59]  Manita S, Suzuki T, Homma C, Matsumoto T, Odagawa M, et al. A Top-Down Cortical Circuit for Accurate Sensory Perception. Neuron. 2015; 86: 1304–1316. doi: 10.1016/j.neuron.2015.05.006. pmid:26004915
[60]  Lavzin M, Rapoport S, Polsky A, Garion L, Schiller J. Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo. Nature. 2012; 490: 397–401. doi: 10.1038/nature11451. pmid:22940864
[61]  Palmer LM, Shai AS, Reeve JE, Anderson HL, Paulsen O, et al. NMDA spikes enhance action potential generation during sensory input. Nat Neurosci. 2014; 17: 383–390. doi: 10.1038/nn.3646. pmid:24487231
[62]  Kleindienst T, Winnubst J, Roth-Alpermann C, Bonhoeffer T, Lohmann C. Activity-dependent clustering of functional synaptic inputs on developing hippocampal dendrites. Neuron. 2011; 72: 1012–1024. doi: 10.1016/j.neuron.2011.10.015. pmid:22196336
[63]  Takahashi N, Kitamura K, Matsuo N, Mayford M, Kano M, et al. Locally synchronized synaptic inputs. Science. 2012; 335: 353–356. doi: 10.1126/science.1210362. pmid:22267814
[64]  Druckmann S, Feng L, Lee B, Yook C, Zhao T, et al. Structured synaptic connectivity between hippocampal regions. Neuron. 2014; 81: 629–640. doi: 10.1016/j.neuron.2013.11.026. pmid:24412418
[65]  Smith SL, Smith IT, Branco T, Hausser M. Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo. Nature. 2013; 503: 115–120. doi: 10.1038/nature12600. pmid:24162850
[66]  Dehaene S, Naccache L, Le Clec HG, Koechlin E, Mueller M, et al. Imaging unconscious semantic priming. Nature. 1998; 395: 597–600. pmid:9783584 doi: 10.1038/26967
[67]  Fiser J, Biederman I. Invariance of long-term visual priming to scale, reflection, translation, and hemisphere. Vision Res. 2001; 41: 221–234. pmid:11163856 doi: 10.1016/s0042-6989(00)00234-0
[68]  Lamme VA, Roelfsema PR. The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci. 2000; 23: 571–579. pmid:11074267 doi: 10.1016/s0166-2236(00)01657-x
[69]  Liu T, Stevens ST, Carrasco M. Comparing the time course and efficacy of spatial and feature-based attention. Vision Res. 2007; 47: 108–113. pmid:17087987 doi: 10.1016/j.visres.2006.09.017
[70]  Watanabe T, Harner AM, Miyauchi S, Sasaki Y, Nielsen M, et al. Task-dependent influences of attention on the activation of human primary visual cortex. Proc Natl Acad Sci U S A. 1998; 95: 11489–11492. pmid:9736764 doi: 10.1073/pnas.95.19.11489
[71]  Vidyasagar TR. Gating of neuronal responses in macaque primary visual cortex by an attentional spotlight. Neuroreport. 1998; 9: 1947–1952. pmid:9674572 doi: 10.1097/00001756-199806220-00006
[72]  Li W, Piech V, Gilbert CD. Perceptual learning and top-down influences in primary visual cortex. Nat Neurosci. 2004; 7: 651–657. pmid:15156149 doi: 10.1038/nn1255
[73]  Poort J, Raudies F, Wannig A, Lamme VA, Neumann H, et al. The role of attention in figure-ground segregation in areas V1 and V4 of the visual cortex. Neuron. 2012; 75: 143–156. doi: 10.1016/j.neuron.2012.04.032. pmid:22794268
[74]  Jack AI, Shulman GL, Snyder AZ, McAvoy M, Corbetta M. Separate modulations of human V1 associated with spatial attention and task structure. Neuron. 2006; 51: 135–147. pmid:16815338 doi: 10.1016/j.neuron.2006.06.003
[75]  De Graef P, Verfaillie K. Transsaccadic memory for visual object detail. Prog Brain Res. 2002; 140: 181–196. pmid:12508590 doi: 10.1016/s0079-6123(02)40050-7
[76]  Irwin DE, Andrews R. Integration and accumulation of information across saccadic eye movements. In: Inui T, McClelland JL, editors. Attention and performance XVI: Information integration in perception and communication. Cambridge: MIT Press; 1996. pp. 125–155.
[77]  Irwin DE. Memory for position and identity across eye movements. J Exp Psychol Learn Mem Cogn. 1992; 18: 307–317. doi: 10.1037//0278-7393.18.2.307
[78]  Minamisawa G, Funayama K, Matsuki N, Ikegaya Y. Intact internal dynamics of the neocortex in acutely paralyzed mice. J Physiol Sci. 2011; 61: 343–348. doi: 10.1007/s12576-011-0155-x. pmid:21633910
[79]  Ishikawa D, Matsumoto N, Sakaguchi T, Matsuki N, Ikegaya Y. Operant conditioning of synaptic and spiking activity patterns in single hippocampal neurons. J Neurosci. 2014; 34: 5044–5053. doi: 10.1523/JNEUROSCI.5298-13.2014. pmid:24695722
[80]  Mohajerani MH, McVea DA, Fingas M, Murphy TH. Mirrored bilateral slow-wave cortical activity within local circuits revealed by fast bihemispheric voltage-sensitive dye imaging in anesthetized and awake mice. J Neurosci. 2010; 30: 3745–3751. doi: 10.1523/JNEUROSCI.6437-09.2010. pmid:20220008
[81]  Shoham D, Glaser DE, Arieli A, Kenet T, Wijnbergen C, et al. Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes. Neuron. 1991; 24: 791–802. doi: 10.1016/s0896-6273(00)81027-2
[82]  Brainard DH. The Psychophysics Toolbox. Spat Vis. 1997; 10: 433–436. pmid:9176952 doi: 10.1163/156856897x00357
[83]  Ban H, Yamamoto H. A non-device-specific approach to display characterization based on linear, nonlinear, and hybrid search algorithms. J Vis. 2013; 13: 20. doi: 10.1167/13.6.20
[84]  Naruse Y. Development of mobile wireless EEG system with dry electrode. Proc Life Eng Symp. 2014; 1: 130–132.
[85]  Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004; 134: 9–21. pmid:15102499 doi: 10.1016/j.jneumeth.2003.10.009
[86]  Swindale NV. Orientation tuning curves: empirical description and estimation of parameters. Biol Cybern. 1998; 78: 45–56. pmid:9518026 doi: 10.1007/s004220050411
[87]  Nimmerjahn A, Kirchhoff F, Kerr JN, Helmchen F. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods. 2004; 1: 31–37. pmid:15782150 doi: 10.1038/nmeth706
[88]  Sohya K, Kameyama K, Yanagawa Y, Obata K, Tsumoto T. GABAergic neurons are less selective to stimulus orientation than excitatory neurons in layer II/III of visual cortex, as revealed by in vivo functional Ca2+ imaging in transgenic mice. J Neurosci. 2007; 27: 2145–2149. pmid:17314309 doi: 10.1523/jneurosci.4641-06.2007

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133