[1] | Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex. 1991; 1: 1–47. pmid:1822724 doi: 10.1093/cercor/1.1.1
|
[2] | Purves D, Lotto RB, Williams SM, Nundy S, Yang Z. Why we see things the way we do: evidence for a wholly empirical strategy of vision. Philos Trans R Soc Lond B Biol Sci. 2001; 356: 285–297. pmid:11316481 doi: 10.1098/rstb.2000.0772
|
[3] | Nikolic D, Hausler S, Singer W, Maass W. Distributed fading memory for stimulus properties in the primary visual cortex. PLoS Biol. 2009; 7: e1000260. doi: 10.1371/journal.pbio.1000260. pmid:20027205
|
[4] | Shuler MG, Bear MF. Reward timing in the primary visual cortex. Science. 2006; 311: 1606–1609. pmid:16543459 doi: 10.1126/science.1123513
|
[5] | Chubykin AA, Roach EB, Bear MF, Shuler MG. A cholinergic mechanism for reward timing within primary visual cortex. Neuron. 2013; 77: 723–735. doi: 10.1016/j.neuron.2012.12.039. pmid:23439124
|
[6] | Han F, Caporale N, Dan Y. Reverberation of recent visual experience in spontaneous cortical waves. Neuron. 2008; 60: 321–327. doi: 10.1016/j.neuron.2008.08.026. pmid:18957223
|
[7] | Liang F, Xiong XR, Zingg B, Ji XY, Zhang LI, et al. Sensory cortical control of a visually induced arrest behavior via corticotectal projections. Neuron. 2015; in press. doi: 10.1016/j.neuron.2015.03.048
|
[8] | Xu W, Huang X, Takagaki K, Wu JY. Compression and reflection of visually evoked cortical waves. Neuron. 2007; 55: 119–129. pmid:17610821 doi: 10.1016/j.neuron.2007.06.016
|
[9] | Benucci A, Frazor RA, Carandini M. Standing waves and traveling waves distinguish two circuits in visual cortex. Neuron. 2007; 55: 103–117. pmid:17610820 doi: 10.1016/j.neuron.2007.06.017
|
[10] | Dick AO. Iconic memory and its relation to perceptual processing and other memory mechanisms. Percep Psychophys. 1974; 16: 575–596. doi: 10.3758/bf03198590
|
[11] | Averbach E, Sperling G. Short-term storage of information in vision. In: Cherry C, editor. Information Theory. London: Butterworth; 1961.
|
[12] | Super H, Spekreijse H, Lamme VA. A neural correlate of working memory in the monkey primary visual cortex. Science. 2001; 293: 120–124. pmid:11441187 doi: 10.1126/science.1060496
|
[13] | Munneke J, Heslenfeld DJ, Theeuwes J. Spatial working memory effects in early visual cortex. Brain Cogn. 2010; 72: 368–377. doi: 10.1016/j.bandc.2009.11.001. pmid:19962813
|
[14] | Harrison SA, Tong F. Decoding reveals the contents of visual working memory in early visual areas. Nature. 2009; 458: 632–635. doi: 10.1038/nature07832. pmid:19225460
|
[15] | Amit DJ. The Hebbian paradigm reintegrated: local reverberations as internal representations. Behav Brain Sci. 1995; 18: 617–657. doi: 10.1017/s0140525x00040164
|
[16] | Wang XJ. Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci. 2001; 24: 455–463. pmid:11476885 doi: 10.1016/s0166-2236(00)01868-3
|
[17] | Ringach DL, Hawken MJ, Shapley R. Dynamics of orientation tuning in macaque primary visual cortex. Nature. 1997; 387: 281–284. pmid:9153392 doi: 10.1038/387281a0
|
[18] | Benucci A, Ringach DL, Carandini M. Coding of stimulus sequences by population responses in visual cortex. Nat Neurosci. 2009; 12: 1317–1324. doi: 10.1038/nn.2398. pmid:19749748
|
[19] | Brascamp JW, Knapen TH, Kanai R, van Ee R, van den Berg AV. Flash suppression and flash facilitation in binocular rivalry. J Vis. 2007; 7: 12 11–12. pmid:17997654 doi: 10.1167/7.12.12
|
[20] | Fischer J, Whitney D. Serial dependence in visual perception. Nat Neurosci. 2014; 17: 738–743. doi: 10.1038/nn.3689. pmid:24686785
|
[21] | Maljkovic V, Nakayama K. Priming of pop-out: I. Role of features. Mem Cognit. 1994; 22: 657–672. pmid:7808275 doi: 10.3758/bf03209251
|
[22] | Kahneman D, Treisman A, Gibbs BJ. The reviewing of object files: object-specific integration of information. Cogn Psychol. 1992; 24: 175–219. pmid:1582172 doi: 10.1016/0010-0285(92)90007-o
|
[23] | Boynton GM, Finney EM. Orientation-specific adaptation in human visual cortex. J Neurosci. 2003; 23: 8781–8787. pmid:14507978
|
[24] | Weigelt S, Muckli L, Kohler A. Functional magnetic resonance adaptation in visual neuroscience. Rev Neurosci. 2008; 19: 363–380. pmid:19145990 doi: 10.1515/revneuro.2008.19.4-5.363
|
[25] | Movshon JA, Lennie P. Pattern-selective adaptation in visual cortical neurones. Nature. 1979; 278: 850–852. pmid:440411 doi: 10.1038/278850a0
|
[26] | Haider B, Krause MR, Duque A, Yu Y, Touryan J, et al. Synaptic and network mechanisms of sparse and reliable visual cortical activity during nonclassical receptive field stimulation. Neuron. 2010; 65: 107–121. doi: 10.1016/j.neuron.2009.12.005. pmid:20152117
|
[27] | Niell CM, Stryker MP. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron. 2010; 65: 472–479. doi: 10.1016/j.neuron.2010.01.033. pmid:20188652
|
[28] | Sakata S, Harris KD. Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron. 2009; 64: 404–418. doi: 10.1016/j.neuron.2009.09.020. pmid:19914188
|
[29] | de Kock CP, Bruno RM, Spors H, Sakmann B. Layer- and cell-type-specific suprathreshold stimulus representation in rat primary somatosensory cortex. J Physiol. 2007; 581: 139–154. pmid:17317752 doi: 10.1113/jphysiol.2006.124321
|
[30] | Crochet S, Poulet JF, Kremer Y, Petersen CC. Synaptic mechanisms underlying sparse coding of active touch. Neuron. 2011; 69: 1160–1175. doi: 10.1016/j.neuron.2011.02.022. pmid:21435560
|
[31] | Kendall MG, Stuart A, Ord JK, Arnold SF, O'Hagan A. Kendall's advanced theory of statistics. New York: Halsted Press; 1994.
|
[32] | Bedard C, Kroger H, Destexhe A. Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophys J. 2004; 86: 1829–1842. pmid:14990509 doi: 10.1016/s0006-3495(04)74250-2
|
[33] | Mohajerani MH, Chan AW, Mohsenvand M, LeDue J, Liu R, et al. Spontaneous cortical activity alternates between motifs defined by regional axonal projections. Nat Neurosci. 2013; 16: 1426–1435. doi: 10.1038/nn.3499. pmid:23974708
|
[34] | Herbert H, Jasper MD. Report of the committee on methods of clinical examination in electroencephalography 1957. Electroencephalography Clin Neurophysiol. 1957; 10: 370–375. doi: 10.1016/0013-4694(58)90053-1
|
[35] | Sachidhanandam S, Sreenivasan V, Kyriakatos A, Kremer Y, Petersen CC. Membrane potential correlates of sensory perception in mouse barrel cortex. Nat Neurosci. 2013; 16: 1671–1677. doi: 10.1038/nn.3532. pmid:24097038
|
[36] | Volgushev M, Vidyasagar TR, Pei X. Dynamics of the orientation tuning of postsynaptic potentials in the cat visual cortex. Vis Neurosci. 1995; 12: 621–628. pmid:8527364 doi: 10.1017/s0952523800008919
|
[37] | Pei X, Vidyasagar TR, Volgushev M, Creutzfeldt OD. Receptive field analysis and orientation selectivity of postsynaptic potentials of simple cells in cat visual cortex. J Neurosci. 1994; 14: 7130–7140. pmid:7965103
|
[38] | Hubel DH, Wiesel TN. Receptive fields of single neurones in the cat's striate cortex. J Physiol. 1959; 148: 574–591. pmid:14403679 doi: 10.1113/jphysiol.1959.sp006308
|
[39] | Drager UC. Receptive fields of single cells and topography in mouse visual cortex. J Comp Neurol. 1975; 160: 269–290. pmid:1112925 doi: 10.1002/cne.901600302
|
[40] | Metin C, Godement P, Imbert M. The primary visual cortex in the mouse: receptive field properties and functional organization. Exp Brain Res. 1988; 69: 594–612. pmid:3371440 doi: 10.1007/bf00247312
|
[41] | Niell CM, Stryker MP. Highly selective receptive fields in mouse visual cortex. J Neurosci. 2008; 28: 7520–7536. doi: 10.1523/JNEUROSCI.0623-08.2008. pmid:18650330
|
[42] | Liu BH, Li YT, Ma WP, Pan CJ, Zhang LI, et al. Broad inhibition sharpens orientation selectivity by expanding input dynamic range in mouse simple cells. Neuron. 2011; 71: 542–554. doi: 10.1016/j.neuron.2011.06.017. pmid:21835349
|
[43] | Priebe NJ, Ferster D. Inhibition, spike threshold, and stimulus selectivity in primary visual cortex. Neuron. 2008; 57: 482–497. doi: 10.1016/j.neuron.2008.02.005. pmid:18304479
|
[44] | Ferster D, Miller KD. Neural mechanisms of orientation selectivity in the visual cortex. Annu Rev Neurosci. 2000; 23: 441–471. pmid:10845071 doi: 10.1146/annurev.neuro.23.1.441
|
[45] | Benucci A, Saleem AB, Carandini M. Adaptation maintains population homeostasis in primary visual cortex. Nat Neurosci. 2013; 16: 724–729. doi: 10.1038/nn.3382. pmid:23603708
|
[46] | Dragoi V, Rivadulla C, Sur M. Foci of orientation plasticity in visual cortex. Nature. 2001; 411: 80–86. pmid:11333981 doi: 10.1038/35075070
|
[47] | Prusky GT, Alam NM, Beekman S, Douglas RM. Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest Ophthalmol Vis Sci. 2004; 45: 4611–4616. pmid:15557474 doi: 10.1167/iovs.04-0541
|
[48] | Binzegger T, Douglas RJ, Martin KA. A quantitative map of the circuit of cat primary visual cortex. J Neurosci. 2004; 24: 8441–8453. pmid:15456817 doi: 10.1523/jneurosci.1400-04.2004
|
[49] | Lefort S, Tomm C, Floyd Sarria JC, Petersen CC. The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron. 2009; 61: 301–316. doi: 10.1016/j.neuron.2008.12.020. pmid:19186171
|
[50] | Jia H, Rochefort NL, Chen X, Konnerth A. Dendritic organization of sensory input to cortical neurons in vivo. Nature. 2010; 464: 1307–1312. doi: 10.1038/nature08947. pmid:20428163
|
[51] | Ko H, Hofer SB, Pichler B, Buchanan KA, Sjostrom PJ, et al. Functional specificity of local synaptic connections in neocortical networks. Nature. 2011; 473: 87–91. doi: 10.1038/nature09880. pmid:21478872
|
[52] | Hofer SB, Ko H, Pichler B, Vogelstein J, Ros H, et al. Differential connectivity and response dynamics of excitatory and inhibitory neurons in visual cortex. Nat Neurosci. 2011; 14: 1045–1052. doi: 10.1038/nn.2876. pmid:21765421
|
[53] | Li Y, Lu H, Cheng PL, Ge S, Xu H, et al. Clonally related visual cortical neurons show similar stimulus feature selectivity. Nature. 2012; 486: 118–121. doi: 10.1038/nature11110. pmid:22678292
|
[54] | Yu YC, Bultje RS, Wang X, Shi SH. Specific synapses develop preferentially among sister excitatory neurons in the neocortex. Nature. 2009; 458: 501–504. doi: 10.1038/nature07722. pmid:19204731
|
[55] | Ohtsuki G, Nishiyama M, Yoshida T, Murakami T, Histed M, et al. Similarity of visual selectivity among clonally related neurons in visual cortex. Neuron. 2012; 75: 65–72. doi: 10.1016/j.neuron.2012.05.023. pmid:22794261
|
[56] | Song S, Sjostrom PJ, Reigl M, Nelson S, Chklovskii DB. Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 2005; 3: e68. pmid:15737062 doi: 10.1371/journal.pbio.0030068
|
[57] | Sadovsky AJ, MacLean JN. Mouse visual neocortex supports multiple stereotyped patterns of microcircuit activity. J Neurosci. 2014; 34: 7769–7777. doi: 10.1523/JNEUROSCI.0169-14.2014. pmid:24899701
|
[58] | Guillery RW, Sherman SM. Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron. 2002; 33: 163–175. pmid:11804565 doi: 10.1016/s0896-6273(01)00582-7
|
[59] | Manita S, Suzuki T, Homma C, Matsumoto T, Odagawa M, et al. A Top-Down Cortical Circuit for Accurate Sensory Perception. Neuron. 2015; 86: 1304–1316. doi: 10.1016/j.neuron.2015.05.006. pmid:26004915
|
[60] | Lavzin M, Rapoport S, Polsky A, Garion L, Schiller J. Nonlinear dendritic processing determines angular tuning of barrel cortex neurons in vivo. Nature. 2012; 490: 397–401. doi: 10.1038/nature11451. pmid:22940864
|
[61] | Palmer LM, Shai AS, Reeve JE, Anderson HL, Paulsen O, et al. NMDA spikes enhance action potential generation during sensory input. Nat Neurosci. 2014; 17: 383–390. doi: 10.1038/nn.3646. pmid:24487231
|
[62] | Kleindienst T, Winnubst J, Roth-Alpermann C, Bonhoeffer T, Lohmann C. Activity-dependent clustering of functional synaptic inputs on developing hippocampal dendrites. Neuron. 2011; 72: 1012–1024. doi: 10.1016/j.neuron.2011.10.015. pmid:22196336
|
[63] | Takahashi N, Kitamura K, Matsuo N, Mayford M, Kano M, et al. Locally synchronized synaptic inputs. Science. 2012; 335: 353–356. doi: 10.1126/science.1210362. pmid:22267814
|
[64] | Druckmann S, Feng L, Lee B, Yook C, Zhao T, et al. Structured synaptic connectivity between hippocampal regions. Neuron. 2014; 81: 629–640. doi: 10.1016/j.neuron.2013.11.026. pmid:24412418
|
[65] | Smith SL, Smith IT, Branco T, Hausser M. Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo. Nature. 2013; 503: 115–120. doi: 10.1038/nature12600. pmid:24162850
|
[66] | Dehaene S, Naccache L, Le Clec HG, Koechlin E, Mueller M, et al. Imaging unconscious semantic priming. Nature. 1998; 395: 597–600. pmid:9783584 doi: 10.1038/26967
|
[67] | Fiser J, Biederman I. Invariance of long-term visual priming to scale, reflection, translation, and hemisphere. Vision Res. 2001; 41: 221–234. pmid:11163856 doi: 10.1016/s0042-6989(00)00234-0
|
[68] | Lamme VA, Roelfsema PR. The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci. 2000; 23: 571–579. pmid:11074267 doi: 10.1016/s0166-2236(00)01657-x
|
[69] | Liu T, Stevens ST, Carrasco M. Comparing the time course and efficacy of spatial and feature-based attention. Vision Res. 2007; 47: 108–113. pmid:17087987 doi: 10.1016/j.visres.2006.09.017
|
[70] | Watanabe T, Harner AM, Miyauchi S, Sasaki Y, Nielsen M, et al. Task-dependent influences of attention on the activation of human primary visual cortex. Proc Natl Acad Sci U S A. 1998; 95: 11489–11492. pmid:9736764 doi: 10.1073/pnas.95.19.11489
|
[71] | Vidyasagar TR. Gating of neuronal responses in macaque primary visual cortex by an attentional spotlight. Neuroreport. 1998; 9: 1947–1952. pmid:9674572 doi: 10.1097/00001756-199806220-00006
|
[72] | Li W, Piech V, Gilbert CD. Perceptual learning and top-down influences in primary visual cortex. Nat Neurosci. 2004; 7: 651–657. pmid:15156149 doi: 10.1038/nn1255
|
[73] | Poort J, Raudies F, Wannig A, Lamme VA, Neumann H, et al. The role of attention in figure-ground segregation in areas V1 and V4 of the visual cortex. Neuron. 2012; 75: 143–156. doi: 10.1016/j.neuron.2012.04.032. pmid:22794268
|
[74] | Jack AI, Shulman GL, Snyder AZ, McAvoy M, Corbetta M. Separate modulations of human V1 associated with spatial attention and task structure. Neuron. 2006; 51: 135–147. pmid:16815338 doi: 10.1016/j.neuron.2006.06.003
|
[75] | De Graef P, Verfaillie K. Transsaccadic memory for visual object detail. Prog Brain Res. 2002; 140: 181–196. pmid:12508590 doi: 10.1016/s0079-6123(02)40050-7
|
[76] | Irwin DE, Andrews R. Integration and accumulation of information across saccadic eye movements. In: Inui T, McClelland JL, editors. Attention and performance XVI: Information integration in perception and communication. Cambridge: MIT Press; 1996. pp. 125–155.
|
[77] | Irwin DE. Memory for position and identity across eye movements. J Exp Psychol Learn Mem Cogn. 1992; 18: 307–317. doi: 10.1037//0278-7393.18.2.307
|
[78] | Minamisawa G, Funayama K, Matsuki N, Ikegaya Y. Intact internal dynamics of the neocortex in acutely paralyzed mice. J Physiol Sci. 2011; 61: 343–348. doi: 10.1007/s12576-011-0155-x. pmid:21633910
|
[79] | Ishikawa D, Matsumoto N, Sakaguchi T, Matsuki N, Ikegaya Y. Operant conditioning of synaptic and spiking activity patterns in single hippocampal neurons. J Neurosci. 2014; 34: 5044–5053. doi: 10.1523/JNEUROSCI.5298-13.2014. pmid:24695722
|
[80] | Mohajerani MH, McVea DA, Fingas M, Murphy TH. Mirrored bilateral slow-wave cortical activity within local circuits revealed by fast bihemispheric voltage-sensitive dye imaging in anesthetized and awake mice. J Neurosci. 2010; 30: 3745–3751. doi: 10.1523/JNEUROSCI.6437-09.2010. pmid:20220008
|
[81] | Shoham D, Glaser DE, Arieli A, Kenet T, Wijnbergen C, et al. Imaging cortical dynamics at high spatial and temporal resolution with novel blue voltage-sensitive dyes. Neuron. 1991; 24: 791–802. doi: 10.1016/s0896-6273(00)81027-2
|
[82] | Brainard DH. The Psychophysics Toolbox. Spat Vis. 1997; 10: 433–436. pmid:9176952 doi: 10.1163/156856897x00357
|
[83] | Ban H, Yamamoto H. A non-device-specific approach to display characterization based on linear, nonlinear, and hybrid search algorithms. J Vis. 2013; 13: 20. doi: 10.1167/13.6.20
|
[84] | Naruse Y. Development of mobile wireless EEG system with dry electrode. Proc Life Eng Symp. 2014; 1: 130–132.
|
[85] | Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004; 134: 9–21. pmid:15102499 doi: 10.1016/j.jneumeth.2003.10.009
|
[86] | Swindale NV. Orientation tuning curves: empirical description and estimation of parameters. Biol Cybern. 1998; 78: 45–56. pmid:9518026 doi: 10.1007/s004220050411
|
[87] | Nimmerjahn A, Kirchhoff F, Kerr JN, Helmchen F. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods. 2004; 1: 31–37. pmid:15782150 doi: 10.1038/nmeth706
|
[88] | Sohya K, Kameyama K, Yanagawa Y, Obata K, Tsumoto T. GABAergic neurons are less selective to stimulus orientation than excitatory neurons in layer II/III of visual cortex, as revealed by in vivo functional Ca2+ imaging in transgenic mice. J Neurosci. 2007; 27: 2145–2149. pmid:17314309 doi: 10.1523/jneurosci.4641-06.2007
|