全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Biology  2015 

Isometric Scaling in Developing Long Bones Is Achieved by an Optimal Epiphyseal Growth Balance

DOI: 10.1371/journal.pbio.1002212

Full-Text   Cite this paper   Add to My Lib

Abstract:

One of the major challenges that developing organs face is scaling, that is, the adjustment of physical proportions during the massive increase in size. Although organ scaling is fundamental for development and function, little is known about the mechanisms that regulate it. Bone superstructures are projections that typically serve for tendon and ligament insertion or articulation and, therefore, their position along the bone is crucial for musculoskeletal functionality. As bones are rigid structures that elongate only from their ends, it is unclear how superstructure positions are regulated during growth to end up in the right locations. Here, we document the process of longitudinal scaling in developing mouse long bones and uncover the mechanism that regulates it. To that end, we performed a computational analysis of hundreds of three-dimensional micro-CT images, using a newly developed method for recovering the morphogenetic sequence of developing bones. Strikingly, analysis revealed that the relative position of all superstructures along the bone is highly preserved during more than a 5-fold increase in length, indicating isometric scaling. It has been suggested that during development, bone superstructures are continuously reconstructed and relocated along the shaft, a process known as drift. Surprisingly, our results showed that most superstructures did not drift at all. Instead, we identified a novel mechanism for bone scaling, whereby each bone exhibits a specific and unique balance between proximal and distal growth rates, which accurately maintains the relative position of its superstructures. Moreover, we show mathematically that this mechanism minimizes the cumulative drift of all superstructures, thereby optimizing the scaling process. Our study reveals a general mechanism for the scaling of developing bones. More broadly, these findings suggest an evolutionary mechanism that facilitates variability in bone morphology by controlling the activity of individual epiphyseal plates.

References

[1]  Olsen BR, Reginato AM, Wang W. Bone development. Annual review of cell and developmental biology. 2000;16:191–220. Epub 2000/10/14. pmid:11031235 doi: 10.1146/annurev.cellbio.16.1.191
[2]  Kozhemyakina E, Lassar AB, Zelzer E. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development. 2015;142(5):817–31. doi: 10.1242/dev.105536. pmid:25715393
[3]  Provot S, Schipani E. Molecular mechanisms of endochondral bone development. Biochemical and biophysical research communications. 2005;328(3):658–65. pmid:15694399 doi: 10.1016/j.bbrc.2004.11.068
[4]  Lefebvre V, Bhattaram P. Vertebrate skeletogenesis. Current topics in developmental biology. 2010;90:291–317. doi: 10.1016/S0070-2153(10)90008-2. pmid:20691853
[5]  Akiyama H, Lefebvre V. Unraveling the transcriptional regulatory machinery in chondrogenesis. J Bone Miner Metab. 2011;29(4):390–5. doi: 10.1007/s00774-011-0273-9. pmid:21594584
[6]  Hansson LI, Menander-Sellman K, Stenstrom A, Thorngren KG. Rate of normal longitudinal bone growth in the rat. Calcified tissue research. 1972;10(3):238–51. pmid:4639288 doi: 10.1007/bf02012553
[7]  Wuelling M, Vortkamp A. Transcriptional networks controlling chondrocyte proliferation and differentiation during endochondral ossification. Pediatric nephrology. 2010;25(4):625–31. doi: 10.1007/s00467-009-1368-6. pmid:19949815
[8]  Breur GJ, VanEnkevort BA, Farnum CE, Wilsman NJ. Linear relationship between the volume of hypertrophic chondrocytes and the rate of longitudinal bone growth in growth plates. Journal of orthopaedic research: official publication of the Orthopaedic Research Society. 1991;9(3):348–59. doi: 10.1002/jor.1100090306
[9]  Church LE, Johnson LC. Growth of Long Bones in the Chicken. Rates of Growth in Length and Diameter of the Humerus, Tibia, and Metatarsus. The American journal of anatomy. 1964;114:521–38. pmid:14167174 doi: 10.1002/aja.1001140310
[10]  Digby KH. The Measurement of Diaphysial Growth in Proximal and Distal Directions. Journal of anatomy and physiology. 1916;50(Pt 2):187–8.
[11]  Payton CG. The Growth in Length of the Long Bones in the Madder-fed Pig. Journal of anatomy. 1932;66(Pt 3):414–25.
[12]  Wilsman NJ, Bernardini ES, Leiferman E, Noonan K, Farnum CE. Age and Pattern of the Onset of Differential Growth among Growth Plates in Rats. J Orthopaed Res. 2008;26(11):1457–65. doi: 10.1002/jor.20547
[13]  Wilsman NJ, Farnum CE, Green EM, Lieferman EM, Clayton MK. Cell cycle analysis of proliferative zone chondrocytes in growth plates elongating at different rates. Journal of orthopaedic research: official publication of the Orthopaedic Research Society. 1996;14(4):562–72. doi: 10.1002/jor.1100140410
[14]  Hales S, Innys J, Innys W, Woodward T, Bolton HC. Vegetable staticks, or, An account of some statical experiments on the sap in vegetables: being an essay towards a natural history of vegetation: also, a specimen of an attempt to analyse the air by a great variety of chymio-statical experiments, which were read at several meetings before the Royal Society. London: Printed for W. and J. Innys; 1727. 8, ii–vii, 2, 376 p.
[15]  Anemone RL, Covert HH. New skeletal remains of Omomys (Primates, Omomyidae): functional morphology of the hindlimb and locomotor behavior of a Middle Eocene primate. Journal of human evolution. 2000;38(5):607–33. pmid:10799256 doi: 10.1006/jhev.1999.0371
[16]  Milne N, O'Higgins P. Scaling of form and function in the xenarthran femur: a 100-fold increase in body mass is mitigated by repositioning of the third trochanter. Proceedings Biological sciences / The Royal Society. 2012;279(1742):3449–56. doi: 10.1098/rspb.2012.0593. pmid:22673355
[17]  Salton JA, Sargis EJ. Evolutionary morphology of the Tenrecoidea (Mammalia) hindlimb skeleton. Journal of morphology. 2009;270(3):367–87. doi: 10.1002/jmor.10697. pmid:19107938
[18]  Blitz NM. The versatility of the Lapidus arthrodesis. Clinics in podiatric medicine and surgery. 2009;26(3):427–41, Table of Contents. doi: 10.1016/j.cpm.2009.03.009. pmid:19505642
[19]  Blitz E, Sharir A, Akiyama H, Zelzer E. Tendon-bone attachment unit is formed modularly by a distinct pool of Scx- and Sox9-positive progenitors. Development. 2013;140(13):2680–90. doi: 10.1242/dev.093906. pmid:23720048
[20]  Bateman N. Bone growth: a study of the grey-lethal and microphthalmic mutants of the mouse. Journal of anatomy. 1954;88(2):212–62. Epub 1954/04/01. pmid:13162938
[21]  Boyd SK, Moser S, Kuhn M, Klinck RJ, Krauze PL, Muller R, et al. Evaluation of three-dimensional image registration methodologies for in vivo micro-computed tomography. Annals of biomedical engineering. 2006;34(10):1587–99. Epub 2006/09/08. pmid:16957987 doi: 10.1007/s10439-006-9168-7
[22]  Zitová B, Flusser J. Image registration methods: a survey. Image and Vision Computing. 2003;21(11):977–1000. doi: 10.1016/s0262-8856(03)00137-9
[23]  Munch B, Ruegsegger P. 3-D repositioning and differential images of volumetric CT measurements. IEEE transactions on medical imaging. 1993;12(3):509–14. Epub 1993/01/01. pmid:18218443 doi: 10.1109/42.241878
[24]  Denton ER, Sonoda LI, Rueckert D, Rankin SC, Hayes C, Leach MO, et al. Comparison and evaluation of rigid, affine, and nonrigid registration of breast MR images. Journal of computer assisted tomography. 1999;23(5):800–5. Epub 1999/10/19. pmid:10524870 doi: 10.1097/00004728-199909000-00031
[25]  Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ. Nonrigid registration using free-form deformations: application to breast MR images. IEEE transactions on medical imaging. 1999;18(8):712–21. Epub 1999/10/26. pmid:10534053 doi: 10.1109/42.796284
[26]  Schnabel JAR, D.; Quist M.; Blackall J. M.; Castellano-Smith A. D.; Hartkens T.; Penny G.P.; Hall W. A.; Liu H.; Truwit C. L.; Gerritsen F. A.; Hill D. L. G.; Hawkes D. J. A Generic Framework for Non-rigid Registration Based on Non-uniform Multi-level Free-Form Deformations. In: Niessen WJV, M. A , editor. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2001. 2208. Berlin, Heidelberg: Springer Berlin Heidelberg; 2001. p. 573–81.
[27]  Studholme C, Hill DLG, Hawkes DJ. An overlap invariant entropy measure of 3D medical image alignment. Pattern Recogn. 1999;32(1):71–86. doi: 10.1016/s0031-3203(98)00091-0
[28]  Gould SJ. Allometry and size in ontogeny and phylogeny. Biological reviews of the Cambridge Philosophical Society. 1966;41(4):587–640. pmid:5342162 doi: 10.1111/j.1469-185x.1966.tb01624.x
[29]  Thompson DAW. On growth and form. An abridged ed. Cambridge Eng.: University Press; 1961. 345 p. p.
[30]  Nijhout HF, German RZ. Developmental causes of allometry: new models and implications for phenotypic plasticity and evolution. Integrative and comparative biology. 2012;52(1):43–52. doi: 10.1093/icb/ics068. pmid:22634387
[31]  Milne N, Toledo N, Vizcaino SF. Allometric and Group Differences in the Xenarthran Femur. J Mamm Evol. 2012;19(3):199–208. doi: 10.1007/s10914-011-9171-0
[32]  Sanger TJ, Norgard EA, Pletscher LS, Bevilacqua M, Brooks VR, Sandell LJ, et al. Developmental and genetic origins of murine long bone length variation. Journal of experimental zoology Part B, Molecular and developmental evolution. 2011;316B(2):146–61. doi: 10.1002/jez.b.21388. pmid:21328530
[33]  Garcia GJ, da Silva JK. On the scaling of mammalian long bones. The Journal of experimental biology. 2004;207(Pt 9):1577–84. doi: 10.1242/jeb.00890
[34]  West GB, Brown JH, Enquist BJ. A general model for the origin of allometric scaling laws in biology. Science. 1997;276(5309):122–6. pmid:9082983 doi: 10.1126/science.276.5309.122
[35]  Morimoto N, Ponce de Leon MS, Zollikofer CP. Exploring femoral diaphyseal shape variation in wild and captive chimpanzees by means of morphometric mapping: a test of Wolff's law. Anat Rec (Hoboken). 2011;294(4):589–609. doi: 10.1002/ar.21346
[36]  Pontzer H, Rolian C, Rightmire GP, Jashashvili T, Ponce de Leon MS, Lordkipanidze D, et al. Locomotor anatomy and biomechanics of the Dmanisi hominins. Journal of human evolution. 2010;58(6):492–504. doi: 10.1016/j.jhevol.2010.03.006. pmid:20447679
[37]  Sharir A, Stern T, Rot C, Shahar R, Zelzer E. Muscle force regulates bone shaping for optimal load-bearing capacity during embryogenesis. Development. 2011;138(15):3247–59. Epub 2011/07/14. doi: 10.1242/dev.063768. pmid:21750035
[38]  Currey JD. The design of mineralised hard tissues for their mechanical functions. Journal of Experimental Biology. 1999;202(23):3285–94.
[39]  Biewener AA. Scaling body support in mammals: limb posture and muscle mechanics. Science. 1989;245(4913):45–8. pmid:2740914 doi: 10.1126/science.2740914
[40]  Lieberman DE, McCarthy RC, Hiiemae KM, Palmer JB. Ontogeny of postnatal hyoid and larynx descent in humans. Archives of oral biology. 2001;46(2):117–28. pmid:11163319 doi: 10.1016/s0003-9969(00)00108-4
[41]  Francis AW Jr., Turingan RG. Morphological and biomechanical changes of the feeding apparatus in developing southern flounder, Paralichthys lethostigma. Journal of morphology. 2008;269(10):1169–80. doi: 10.1002/jmor.10631. pmid:18473368
[42]  Eilam D. Postnatal development of body architecture and gait in several rodent species. The Journal of experimental biology. 1997;200(Pt 9):1339–50. pmid:9172418.
[43]  Glase JC. Tested Studies for Laboratory Teaching: Proceedings of the Second Workshop/Conference of the Association for Biology Laboratory Education (ABLE): Kendall/Hunt Publishing Company; 1981.
[44]  Shoval O, Sheftel H, Shinar G, Hart Y, Ramote O, Mayo A, et al. Evolutionary trade-offs, Pareto optimality, and the geometry of phenotype space. Science. 2012;336(6085):1157–60. doi: 10.1126/science.1217405. pmid:22539553
[45]  Muhl ZF, Gedak GK. The influence of periosteum on tendon and ligament migration. Journal of anatomy. 1986;145:161–71. pmid:3429302
[46]  D?rfl J. Migration of tendinous insertions. I. Cause and mechanism. Journal of anatomy. 1980;131(Pt 1):179.
[47]  D?rfl J. Migration of tendinous insertions. II. Experimental modifications. Journal of anatomy. 1980;131(Pt 2):229.
[48]  Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Developmental cell. 2002;2(4):389–406. Epub 2002/04/24. pmid:11970890 doi: 10.1016/s1534-5807(02)00157-0
[49]  Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. The international journal of biochemistry & cell biology. 2008;40(1):46–62. Epub 2007/07/31. doi: 10.1016/j.biocel.2007.06.009
[50]  Nishimura R, Hata K, Ono K, Amano K, Takigawa Y, Wakabayashi M, et al. Regulation of endochondral ossification by transcription factors. Frontiers in bioscience: a journal and virtual library. 2012;17:2657–66. doi: 10.2741/4076
[51]  St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes & development. 1999;13(16):2072–86. doi: 10.1101/gad.13.16.2072
[52]  Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science. 1996;273(5275):613–22. pmid:8662546 doi: 10.1126/science.273.5275.613
[53]  Wilsman NJ, Farnum CE, Leiferman EM, Fry M, Barreto C. Differential growth by growth plates as a function of multiple parameters of chondrocytic kinetics. J Orthopaed Res. 1996;14(6):927–36. doi: 10.1002/jor.1100140613
[54]  Eeg-Larsen N. An experimental study on growth and glycolysis in the epiphyseal cartilage of rats. Acta physiologica Scandinavica Supplementum. 1956;38(128):1–77. pmid:13381520
[55]  Hall-Craggs EC. The effect of experimental epiphysiodesis on growth in length of the rabbit's tibia. The Journal of bone and joint surgery British volume. 1968;50(2):392–400. pmid:5651349
[56]  Hansson LI. Daily growth in length of diaphysis measured by oxytetracycline in rabbit normally and after medullary plugging. Acta Orthop Scand. 1967:Suppl 101:1+. pmid:6040334 doi: 10.3109/ort.1967.38.suppl-101.01
[57]  Hansson LI, Stenstrom A, Thorngren KG. Diurnal variation of longitudinal bone growth in the rabbit. Acta Orthop Scand. 1974;45(4):499–507. pmid:4476171 doi: 10.3109/17453677408989173
[58]  Hansson LI, Stenstrom A, Thorngren KG. Effect of venous stasis on longitudinal bone growth in the rabbit. Acta Orthop Scand. 1975;46(2):177–84. pmid:1146509 doi: 10.3109/17453677508989205
[59]  Heikel HV. On ossification and growth of certain bones of the rabbit; with a comparison of the skeletal age in the rabbit and in man. Acta Orthop Scand. 1960;29:171–84. pmid:14400622 doi: 10.3109/17453675908988796
[60]  McCormick MJ, Lowe PJ, Ashworth MA. Analysis of the relative contributions of the proximal and distal epiphyseal plates to the growth in length of the tibia in the New Zealand white rabbit. Growth. 1972;36(2):133–44. pmid:5057056
[61]  Grant PG, Buschang PH, Drolet DW, Pickerell C. Invariance of the relative positions of structures attached to long bones during growth: cross-sectional and longitudinal studies. Acta anatomica. 1980;107(1):26–34. pmid:7405511 doi: 10.1159/000145225
[62]  Sansone JM, Wilsman NJ, Leiferman EM, Noonan KJ. The effect of periosteal resection on tibial growth velocity measured by microtransducer technology in lambs. Journal of pediatric orthopedics. 2009;29(1):61–7. doi: 10.1097/BPO.0b013e3181929c71. pmid:19098649
[63]  Foolen J, van Donkelaar CC, Ito K. Intracellular tension in periosteum/perichondrium cells regulates long bone growth. Journal of orthopaedic research: official publication of the Orthopaedic Research Society. 2011;29(1):84–91. doi: 10.1002/jor.21224
[64]  Crilly RG. Longitudinal overgrowth of chicken radius. Journal of anatomy. 1972;112(Pt 1):11–8.
[65]  Harkness EM, Trotter WD. Growth of transplants of rat humerus following circumferential division of the periosteum. Journal of anatomy. 1978;126(Pt 2):275–89. doi: 10.1097/00006534-197907000-00109
[66]  Houghton GR, Rooker GD. The role of the periosteum in the growth of long bones. An experimental study in the rabbit. The Journal of bone and joint surgery British volume. 1979;61-B(2):218–20. pmid:438275
[67]  Warrell E, Taylor JF. The role of periosteal tension in the growth of long bones. Journal of anatomy. 1979;128(Pt 1):179–84.
[68]  Di Nino DL, Long F, Linsenmayer TF. Regulation of endochondral cartilage growth in the developing avian limb: cooperative involvement of perichondrium and periosteum. Developmental biology. 2001;240(2):433–42. pmid:11784074 doi: 10.1006/dbio.2001.0471
[69]  Long F, Linsenmayer TF. Regulation of growth region cartilage proliferation and differentiation by perichondrium. Development. 1998;125(6):1067–73. pmid:9463353. doi: 10.1016/s0945-053x(97)90062-7
[70]  Alvarez J, Horton J, Sohn P, Serra R. The perichondrium plays an important role in mediating the effects of TGF-beta1 on endochondral bone formation. Developmental dynamics: an official publication of the American Association of Anatomists. 2001;221(3):311–21. doi: 10.1002/dvdy.1141
[71]  Di Nino DL, Crochiere ML, Linsenmayer TF. Multiple mechanisms of perichondrial regulation of cartilage growth. Developmental dynamics: an official publication of the American Association of Anatomists. 2002;225(3):250–9. doi: 10.1002/dvdy.10160
[72]  Foolen J, van Donkelaar CC, Murphy P, Huiskes R, Ito K. Residual periosteum tension is insufficient to directly modulate bone growth. J Biomech. 2009;42(2):152–7. doi: 10.1016/j.jbiomech.2008.10.019. pmid:19058805
[73]  Kery L. Effect of periosteal stripping and incision of cortical bone on the longitudinal growth of long bones. An experimental study. Acta chirurgica Academiae Scientiarum Hungaricae. 1972;13(2):133–40. pmid:4654054
[74]  Jenkins DH, Cheng DH, Hodgson AR. Stimulation of bone growth by periosteal stripping. A clinical study. The Journal of bone and joint surgery British volume. 1975;57(4):482–4. pmid:1194317
[75]  Kronenberg HM. The role of the perichondrium in fetal bone development. Annals of the New York Academy of Sciences. 2007;1116:59–64. pmid:18083921 doi: 10.1196/annals.1402.059
[76]  Liu Z, Xu J, Colvin JS, Ornitz DM. Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18. Genes & development. 2002;16(7):859–69. doi: 10.1101/gad.965602
[77]  Ornitz DM, Marie PJ. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes & development. 2002;16(12):1446–65. doi: 10.1101/gad.990702
[78]  McClive PJ, Sinclair AH. Rapid DNA extraction and PCR-sexing of mouse embryos. Molecular reproduction and development. 2001;60(2):225–6. Epub 2001/09/13. pmid:11553922 doi: 10.1002/mrd.1081
[79]  Metscher BD. MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC physiology. 2009;9:11. doi: 10.1186/1472-6793-9-11 pmid:19545439; PubMed Central PMCID: PMC2717911.
[80]  Otsu N. Threshold Selection Method from Gray-Level Histograms. Ieee T Syst Man Cyb. 1979;9(1):62–6. doi: 10.1109/tsmc.1979.4310076
[81]  Team RC. R: A Language and Environment for Statistical Computing. 2014.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133