[1] | Palumbi SR. Evolution—Humans as the world's greatest evolutionary force. Science. 2001;293(5536):1786–90. pmid:11546863 doi: 10.1126/science.293.5536.1786
|
[2] | Bremermann HJ, Pickering J. A Game-Theoretical Model of Parasite Virulence. Journal of Theoretical Biology. 1983;100(3):411–26. pmid:6834864 doi: 10.1016/0022-5193(83)90438-1
|
[3] | May RM, Anderson RM. Epidemiology and genetics in the coevolution of parasites and hosts. Proceedings of the Royal Society of London, Series B. 1983;219:281–313. doi: 10.1098/rspb.1983.0075
|
[4] | Anderson RM, May RM. Coevolution of Hosts and Parasites. Parasitology. 1982;85(OCT):411–26. pmid:6755367 doi: 10.1017/s0031182000055360
|
[5] | Alizon S, Hurford A, Mideo N, Van Baalen M. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. Journal of Evolutionary Biology. 2009;22(2):245–59. doi: 10.1111/j.1420-9101.2008.01658.x. pmid:19196383
|
[6] | Porco TC, Lloyd-Smith JO, Gross KL, Galvani AP. The effect of treatment on pathogen virulence. Journal of Theoretical Biology. 2005;233(1):91–102. pmid:15615623 doi: 10.1016/j.jtbi.2004.09.009
|
[7] | Gandon S, Mackinnon MJ, Nee S, Read AF. Imperfect vaccines and the evolution of pathogen virulence. Nature. 2001;414(6865):751–6. pmid:11742400 doi: 10.1038/414751a
|
[8] | Read AF, Baigent SJ, Powers C, Kgosana LB, Blackwell L, Smith LP, et al. (2015) Imperfect Vaccination Can Enhance the Transmission of Highly Virulent Pathogens. PLoS Biol 13(7):e1002198. doi: 10.1371/journal.pbio.1002198. pmid:26214839
|
[9] | Dieckmann U, Metz JAJ, Sabelis MW, Sigmund K, editors. Adaptive Dynamics of Infectious Disease: In Pursuit of Virulence Management: Cambridge University Press; 2002.
|
[10] | Stearns SC, Ebert D. Evolution in health and disease: Work in progress. Quarterly Review of Biology. 2001;76(4):417–32. pmid:11783396 doi: 10.1086/420539
|
[11] | Stearns SC. Evolutionary medicine: its scope, interest and potential. Proceedings of the Royal Society B-Biological Sciences. 2012;279(1746):4305–21. doi: 10.1098/rspb.2012.1326
|
[12] | Ebert D, Bull JJ. Challenging the trade-off model for the evolution of virulence: is virulence management feasible? Trends in Microbiology. 2003;11(1):15–20. pmid:12526850 doi: 10.1016/s0966-842x(02)00003-3
|
[13] | de Roode JC, Altizer S. Host-parasite genetic interactions and virulence-transmission relationships in natural populations of monarch butterflies. Evolution. 2010;64(2):502–14. doi: 10.1111/j.1558-5646.2009.00845.x. pmid:19796153
|
[14] | de Roode JC, Yates AJ, Altizer S. Virulence-transmission trade-offs and population divergence in virulence in a naturally occuring butterfly parasite. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(21):7489–94. doi: 10.1073/pnas.0710909105. pmid:18492806
|
[15] | Atkins KE, Read AF, Savill NJ, Renz KG, Islam A, Walkden-Brown SW, et al. Vaccination and reduced cohort duration can drive virulence evolution: marek's disease virus and industrialized agriculture. Evolution. 2013;67(3):851–60. doi: 10.1111/j.1558-5646.2012.01803.x. pmid:23461333
|
[16] | Atkins KE, Read AF, Savill NJ, Renz KG, Walkden-Brown SW, Woolhouse MEJ. Modelling Marek's Disease Virus (MDV) infection: parameter estimates for mortality rate and infectiousness. Bmc Veterinary Research. 2011;7. doi: 10.1186/1746-6148-7-70
|
[17] | Osterrieder N, Kamil JP, Schumacher D, Tischer BK, Trapp S. Marek's disease virus: from miasma to model. Nature Reviews Microbiology. 2006;4(4):283–94. pmid:16541136 doi: 10.1038/nrmicro1382
|
[18] | Boots M, Sasaki A. 'Small worlds' and the evolution of virulence: infection occurs locally and at a distance. Proceedings of the Royal Society of London Series B-Biological Sciences. 1999;266(1432):1933–8. doi: 10.1098/rspb.1999.0869
|
[19] | Read AF, Mackinnon MJ. Pathogen evolution in a vaccinated world. In: Stearns SC, Koella JC, editors. Evolution in Health and Disease. Oxford: Oxford University Press; 2008.
|
[20] | Ebert D, Weisser WW. Optimal killing for obligate killers: The evolution of life histories and virulence of semelparous parasites. Proceedings of the Royal Society of London Series B-Biological Sciences. 1997;264(1384):985–91. doi: 10.1098/rspb.1997.0136
|
[21] | Day T. Parasite transmission modes and the evolution of virulence. Evolution. 2001;55(12):2389–400. pmid:ISI:000173528000002. doi: 10.1554/0014-3820(2001)055[2389:ptmate]2.0.co;2
|
[22] | Alizon S. Transmission-recovery trade-offs to study parasite evolution. American Naturalist. 2008;172(3):E113–E21. doi: 10.1086/589892. pmid:18710338
|
[23] | Leggett HC, Buckling A, Long GH, Boots M. Generalism and the evolution of parasite virulence. Trends in Ecology & Evolution. 2013;28(10):592–6. doi: 10.1016/j.tree.2013.07.002
|
[24] | Long GH, Boots M. How can immunopathology shape the evolution of parasite virulence? Trends in Parasitology. 2011;27(7):300–5. doi: 10.1016/j.pt.2011.03.012. pmid:21531628
|
[25] | Best A, Long G, White A, Boots M. The implications of immunopathology for parasite evolution. Proceedings of the Royal Society B-Biological Sciences. 2012;279(1741):3234–40. doi: 10.1098/rspb.2012.0647
|
[26] | Day T, Graham AL, Read AF. Evolution of parasite virulence when host responses cause disease. Proceedings of the Royal Society B-Biological Sciences. 2007;274(1626):2685–92. doi: 10.1098/rspb.2007.0809
|
[27] | Graham AL, Allen JE, Read AF. Evolutionary causes and consequences of immunopathology. Annual Review of Ecology Evolution and Systematics. 2005;36:373–97. doi: 10.1146/annurev.ecolsys.36.102003.152622
|
[28] | Day T, Gandon S. Applying population-genetic models in theoretical evolutionary epidemiology. Ecology Letters. 2007;10(10):876–88. pmid:17845288 doi: 10.1111/j.1461-0248.2007.01091.x
|