全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Biology  2015 

Seeing and Feeling Motion: Canonical Computations in Vision and Touch

DOI: 10.1371/journal.pbio.1002271

Full-Text   Cite this paper   Add to My Lib

Abstract:

While the different sensory modalities are sensitive to different stimulus energies, they are often charged with extracting analogous information about the environment. Neural systems may thus have evolved to implement similar algorithms across modalities to extract behaviorally relevant stimulus information, leading to the notion of a canonical computation. In both vision and touch, information about motion is extracted from a spatiotemporal pattern of activation across a sensory sheet (in the retina and in the skin, respectively), a process that has been extensively studied in both modalities. In this essay, we examine the processing of motion information as it ascends the primate visual and somatosensory neuraxes and conclude that similar computations are implemented in the two sensory systems.

References

[1]  Mountcastle VB. Modality and topographic properties of single neurons of cat's somatic sensory cortex. J Neurophysiol. 1957;20(4):408–34. pmid:13439410
[2]  de No RL. Analysis of the activity of the chains of internuncial neurons. Journal of Neurophysiology. 1938;1(3):207–44.
[3]  Douglas RJ, Martin KA. A functional microcircuit for cat visual cortex. J Physiol. 1991;440:735–69. pmid:1666655 doi: 10.1113/jphysiol.1991.sp018733
[4]  Yau JM, Pasupathy A, Fitzgerald PJ, Hsiao SS, Connor CE. Analogous intermediate shape coding in vision and touch. Proc Natl Acad Sci U S A. 2009;106(38):16457–62. doi: 10.1073/pnas.0904186106. pmid:19805320
[5]  Rauschecker JP. Auditory and visual cortex of primates: a comparison of two sensory systems. Eur J Neurosci. 2015;41(5):579–85. doi: 10.1111/ejn.12844. pmid:25728177
[6]  Creutzfeldt OD. Generality of the functional structure of the neocortex. Naturwissenschaften. 1977;64(10):507–17. pmid:337161 doi: 10.1007/bf00483547
[7]  Mountcastle VB. An Organizing Principle for Cerebral Function: The Unit Model and the Distributed System. In: Gerald M. Edelman and Vernon B. Mountcastle, editor. The Mindful Brain. Cambridge: MIT Press; 1978.
[8]  Barlow H. Cerebral Cortex as Model Builder. Models of the visual cortex. New York: Wiley; 1985.
[9]  Marcus G, Marblestone A, Dean T. Neuroscience. The atoms of neural computation. Science. 2014;346(6209):551–2. doi: 10.1126/science.1261661. pmid:25359953
[10]  Bradley DC, Goyal MS. Velocity computation in the primate visual system. Nat Rev Neurosci. 2008;9(9):686–95. doi: 10.1038/nrn2472. pmid:19143050
[11]  Krause MR, Pack CC. Contextual modulation and stimulus selectivity in extrastriate cortex. Vision Res. 2014;104:36–46. doi: 10.1016/j.visres.2014.10.006. pmid:25449337
[12]  Pei YC, Bensmaia SJ. The neural basis of tactile motion perception. J Neurophysiol. 2014;112(12):3023–32. doi: 10.1152/jn.00391.2014. pmid:25253479
[13]  Mineault PJ, Khawaja FA, Butts DA, Pack CC. Hierarchical processing of complex motion along the primate dorsal visual pathway. Proc Natl Acad Sci U S A. 2012;109(16):E972–80. doi: 10.1073/pnas.1115685109. pmid:22308392
[14]  Casanova MF. Canonical circuits of the cerebral cortex as enablers of neuroprosthetics. Frontiers in systems neuroscience. 2013;7:77. doi: 10.3389/fnsys.2013.00077. pmid:24265606
[15]  Barlow HB, Levick WR. The mechanism of directionally selective units in rabbit's retina. J Physiol (Lond). 1965;178(3):477–504. doi: 10.1113/jphysiol.1965.sp007638
[16]  Frechette ES, Sher A, Grivich MI, Petrusca D, Litke AM, Chichilnisky EJ. Fidelity of the ensemble code for visual motion in primate retina. J Neurophysiol. 2005;94(1):119–35. pmid:15625091 doi: 10.1152/jn.01175.2004
[17]  Essick GK, Edin BB. Receptor encoding of moving tactile stimuli in humans. II. The mean response of individual low-threshold mechanoreceptors to motion across the receptive field. The Journal of neuroscience: the official journal of the Society for Neuroscience. 1995;15(1 Pt 2):848–64.
[18]  Wheat HE, Salo LM, Goodwin AW. Cutaneous afferents from the monkeys fingers: responses to tangential and normal forces. Journal of neurophysiology. 2010;103(2):950–61. doi: 10.1152/jn.00502.2009. pmid:19955296
[19]  Pei YC, Hsiao SS, Craig JC, Bensmaia SJ. Shape invariant coding of motion direction in somatosensory cortex. PLoS Biol. 2010;8(2):e1000305. doi: 10.1371/journal.pbio.1000305. pmid:20126380
[20]  Xu X, Ichida JM, Allison JD, Boyd JD, Bonds AB, Casagrande VA. A comparison of koniocellular, magnocellular and parvocellular receptive field properties in the lateral geniculate nucleus of the owl monkey (Aotus trivirgatus). J Physiol. 2001;531(Pt 1):203–18. doi: 10.1111/j.1469-7793.2001.0203j.x
[21]  Johansson RS, Vallbo AB. Spatial properties of the population of mechanoreceptive units in the glabrous skin of the human hand. Brain research. 1980;184(2):353–66. pmid:7353161 doi: 10.1016/0006-8993(80)90804-5
[22]  Vega-Bermudez F, Johnson KO. SA1 and RA receptive fields, response variability, and population responses mapped with a probe array. Journal of neurophysiology. 1999;81(6):2701–10. pmid:10368390
[23]  Muniak MA, Ray S, Hsiao SS, Dammann JF, Bensmaia SJ. The neural coding of stimulus intensity: linking the population response of mechanoreceptive afferents with psychophysical behavior. J Neurosci. 2007;27(43):11687–99. pmid:17959811 doi: 10.1523/jneurosci.1486-07.2007
[24]  Xu X, Ichida J, Shostak Y, Bonds AB, Casagrande VA. Are primate lateral geniculate nucleus (LGN) cells really sensitive to orientation or direction? Vis Neurosci. 2002;19(1):97–108. pmid:12180863 doi: 10.1017/s0952523802191097
[25]  Hubel DH, Wiesel TN. Receptive fields and functional architecture of monkey striate cortex. J Physiol. 1968;195(1):215–43. pmid:4966457 doi: 10.1113/jphysiol.1968.sp008455
[26]  Mikami A, Newsome WT, Wurtz RH. Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT. J Neurophysiol. 1986;55(6):1308–27. pmid:3016210
[27]  Pack CC, Conway BR, Born RT, Livingstone MS. Spatiotemporal structure of nonlinear subunits in macaque visual cortex. J Neurosci. 2006;26(3):893–907. pmid:16421309 doi: 10.1523/jneurosci.3226-05.2006
[28]  Adelson EH, Bergen JR. Spatiotemporal energy models for the perception of motion. J Opt Soc Am A. 1985;2(2):284–99. pmid:3973762 doi: 10.1364/josaa.2.000284
[29]  van Santen JP, Sperling G. Elaborated Reichardt detectors. J Opt Soc Am A. 1985;2(2):300–21. pmid:3973763 doi: 10.1364/josaa.2.000300
[30]  De Valois RL, Cottaris NP. Inputs to directionally selective simple cells in macaque striate cortex. Proc Natl Acad Sci U S A. 1998;95(24):14488–93. pmid:9826727 doi: 10.1073/pnas.95.24.14488
[31]  DiCarlo JJ, Johnson KO. Spatial and temporal structure of receptive fields in primate somatosensory area 3b: effects of stimulus scanning direction and orientation. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2000;20(1):495–510.
[32]  Livingstone MS. Mechanisms of direction selectivity in macaque V1. Neuron. 1998;20(3):509–26. pmid:9539125 doi: 10.1016/s0896-6273(00)80991-5
[33]  Emerson RC, Bergen JR, Adelson EH. Directionally selective complex cells and the computation of motion energy in cat visual cortex. Vision Res. 1992;32(2):203–18. pmid:1574836 doi: 10.1016/0042-6989(92)90130-b
[34]  Snowden RJ, Treue S, Andersen RA. The response of neurons in areas V1 and MT of the alert rhesus monkey to moving random dot patterns. Exp Brain Res. 1992;88(2):389–400. pmid:1577111 doi: 10.1007/bf02259114
[35]  Dubner R, Zeki SM. Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Res. 1971;35(2):528–32. pmid:5002708 doi: 10.1016/0006-8993(71)90494-x
[36]  Pei YC, Hsiao SS, Craig JC, Bensmaia SJ. Neural mechanisms of tactile motion integration in somatosensory cortex. Neuron. 2011;69(3):536–47. doi: 10.1016/j.neuron.2010.12.033. pmid:21315263
[37]  Simoncelli EP, Heeger DJ. A model of neuronal responses in visual area MT. Vision Res. 1998;38(5):743–61. pmid:9604103 doi: 10.1016/s0042-6989(97)00183-1
[38]  Sripati AP, Yoshioka T, Denchev P, Hsiao SS, Johnson KO. Spatiotemporal receptive fields of peripheral afferents and cortical area 3b and 1 neurons in the primate somatosensory system. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2006;26(7):2101–14. doi: 10.1523/jneurosci.3720-05.2006
[39]  Allman JM, Kaas JH. A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). Brain Res. 1971;31(1):85–105. pmid:4998922 doi: 10.1016/0006-8993(71)90635-4
[40]  Gardner EP. Somatosensory cortical mechanisms of feature detection in tactile and kinesthetic discrimination. Canadian journal of physiology and pharmacology. 1988;66(4):439–54. pmid:3139269 doi: 10.1139/y88-074
[41]  Khawaja FA, Tsui JM, Pack CC. Pattern motion selectivity of spiking outputs and local field potentials in macaque visual cortex. J Neurosci. 2009;29(43):13702–9. doi: 10.1523/JNEUROSCI.2844-09.2009. pmid:19864582
[42]  Perrone JA, Thiele A. Speed skills: measuring the visual speed analyzing properties of primate MT neurons. Nat Neurosci. 2001;4(5):526–32. pmid:11319562
[43]  Movshon JA, Adelson EH, Gizzi MS, Newsome WT. The analysis of moving visual patterns. In: Chagas C, Gattass R, Gross C, editors. Pattern Recognition Mechanisms. Rome: Vatican Press; 1985. p. 117–51.
[44]  Pack CC, Berezovskii VK, Born RT. Dynamic properties of neurons in cortical area MT in alert and anaesthetized macaque monkeys. Nature. 2001;414(6866):905–8. pmid:11780062 doi: 10.1038/414905a
[45]  Attneave F. Some informational aspects of visual perception. Psychological Review. 1954;61:183–93. pmid:13167245 doi: 10.1037/h0054663
[46]  Hubel DH, Wiesel TN. Receptive fields and functional architecture in two non-striate visual areas (18 and 19) of the cat. J Neurophysiol. 1965;28:229–89. pmid:14283058
[47]  DiCarlo JJ, Johnson KO. Receptive field structure in cortical area 3b of the alert monkey. Behavioural brain research. 2002;135(1–2):167–78. pmid:12356447 doi: 10.1016/s0166-4328(02)00162-6
[48]  Pack CC, Livingstone M, Duffy K, Born RT. End-stopping and the aperture problem: two-dimensional motion signals in macaque V1. Neuron. 2003;39(4):671–80. pmid:12925280 doi: 10.1016/s0896-6273(03)00439-2
[49]  Pack CC, Gartland AJ, Born RT. Integration of Contour and Terminator Signals in Visual Area MT of Alert Macaque. J Neurosci. 2004;24(13):3268–80. pmid:15056706 doi: 10.1523/jneurosci.4387-03.2004
[50]  van den Berg AV, Noest AJ. Motion transparency and coherence in plaids: the role of end-stopped cells. Exp Brain Res. 1993;96(3):519–33. pmid:8299753 doi: 10.1007/bf00234120
[51]  Tsui JM, Hunter JN, Born RT, Pack CC. The role of V1 surround suppression in MT motion integration. J Neurophysiol. 2010;103(6):3123–38. doi: 10.1152/jn.00654.2009. pmid:20457860
[52]  Rust NC, Mante V, Simoncelli EP, Movshon JA. How MT cells analyze the motion of visual patterns. Nat Neurosci. 2006;9(11):1421–31. pmid:17041595 doi: 10.1038/nn1786
[53]  Zetzsche C, Barth E. Fundamental limits of linear filters in the visual processing of two-dimensional signals. Vision Res. 1990;30(7):1111–7. pmid:2392840 doi: 10.1016/0042-6989(90)90120-a
[54]  Pei YC, Hsiao SS, Bensmaia SJ. The tactile integration of local motion cues is analogous to its visual counterpart. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(23):8130–5. doi: 10.1073/pnas.0800028105. pmid:18524953
[55]  Khawaja FA, Liu LD, Pack CC. Responses of MST neurons to plaid stimuli. J Neurophysiol. 2013;110(1):63–74. doi: 10.1152/jn.00338.2012. pmid:23596331
[56]  Britten KH, Shadlen MN, Newsome WT, Movshon JA. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J Neurosci. 1992;12(12):4745–65. pmid:1464765
[57]  Olshausen BA, Field DJ. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature. 1996;381(6583):607–9. pmid:8637596 doi: 10.1038/381607a0
[58]  Sanes JR, Zipursky SL. Design principles of insect and vertebrate visual systems. Neuron. 2010;66(1):15–36. doi: 10.1016/j.neuron.2010.01.018. pmid:20399726
[59]  Borst A, Helmstaedter M. Common circuit design in fly and mammalian motion vision. Nat Neurosci. 2015;18(8):1067–76. doi: 10.1038/nn.4050. pmid:26120965
[60]  Bensmaia SJ, Killebrew JH, Craig JC. Influence of visual motion on tactile motion perception. J Neurophysiol. 2006;96(3):1625–37. pmid:16723415 doi: 10.1152/jn.00192.2006
[61]  Konkle T, Wang Q, Hayward V, Moore CI. Motion aftereffects transfer between touch and vision. Current biology: CB. 2009;19(9):745–50. doi: 10.1016/j.cub.2009.03.035. pmid:19361996
[62]  Blake R, Sobel KV, James TW. Neural synergy between kinetic vision and touch. Psychological science. 2004;15(6):397–402. pmid:15147493 doi: 10.1111/j.0956-7976.2004.00691.x
[63]  Sathian K, Stilla R. Cross-modal plasticity of tactile perception in blindness. Restorative neurology and neuroscience. 2010;28(2):271–81. doi: 10.3233/RNN-2010-0534. pmid:20404414
[64]  Bensmaia SJ, Hsiao SS, Denchev PV, Killebrew JH, Craig JC. The tactile perception of stimulus orientation. Somatosens Mot Res. 2008;25(1):49–59. doi: 10.1080/08990220701830662. pmid:18344147
[65]  Bensmaia SJ, Denchev PV, Dammann JF 3rd, Craig JC, Hsiao SS. The representation of stimulus orientation in the early stages of somatosensory processing. J Neurosci. 2008;28(3):776–86. doi: 10.1523/JNEUROSCI.4162-07.2008. pmid:18199777

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133