[1] | Gibson JJ. Observations on active touch. Psychological Review. 1962;69:477–491. pmid:13947730 doi: 10.1037/h0046962
|
[2] | Cullen KE. Sensory signals during active versus passive movement. Current Opinion in Neurobiology. 2004;14:698–706. pmid:15582371 doi: 10.1016/j.conb.2004.10.002
|
[3] | Dieterich M. Central vestibular disorders. Journal of Neurology. 2007;354:559–568. doi: 10.1007/s00415-006-0340-7
|
[4] | Oman CM, Cullen KE. Brainstem processing of vestibular sensory exafference: Implications for motion sickness etiology. Experimental Brain Research. 2014;232:2483–2492. doi: 10.1007/s00221-014-3973-2. pmid:24838552
|
[5] | von Holst E. Relations between the central nervous system and the peripheral organ. British Journal of Animal Behavior. 1954;2:89–94. doi: 10.1016/s0950-5601(54)80044-x
|
[6] | Berryman LJ, Yau JM, Hsiao SS. Representation of object size in the somatosensory system. Journal of Neurophysiology. 2006;96:27–39. pmid:16641375 doi: 10.1152/jn.01190.2005
|
[7] | Bowden REM, Mahran ZY. The functional significance of the pattern of innervation of the muscle quadratus labii superioris of the rabbit, cat, and rat. Journal of Anatomy. 1956;90:221–227.
|
[8] | Semba K, Egger MD. The facial "motor" nerve of the rat: Control of vibrissal movement and examination of motor and sensory components. Journal of Comparative Neurology. 1986;247:144–158. pmid:3722437 doi: 10.1002/cne.902470203
|
[9] | Welt C, Abbs JH. Musculotopic organization of the facial motor nucleus in Macaca fascicularis: a morphometric and retrograde tracing study with cholera toxin B-HRP. Journal of Comparative Neurology. 1990;291:621–636. doi: 10.1002/cne.902910409
|
[10] | St?l P, Eriksson PO, Eriksson A, Thornell LE. Enzyme-histochemical and morphological characteristics of muscle fibre types in the human buccinator and orbicularis oris. Archives of Oral Biology. 1990;3:449–458. doi: 10.1016/0003-9969(90)90208-r
|
[11] | Hines M. Nerve and muscle. The Quarterly Review of Biology. 1927;2:149–180. doi: 10.1086/394271
|
[12] | Fee MS, Mitra PP, Kleinfeld D. Central versus peripheral determinates of patterned spike activity in rat vibrissa cortex during whisking. Journal of Neurophysiology. 1997;78:1144–1149. pmid:9307141
|
[13] | Crochet S, Petersen CCH. Correlating membrane potential with behaviour using whole-cell recordings from barrel cortex of awake mice. Nature Neuroscience. 2006;9:608–609. pmid:16617340 doi: 10.1038/nn1690
|
[14] | Khatri V, Bermejo R, Brumberg JC, Keller A, Zeigler HP. Whisking in air: Encoding of kinematics by trigeminal ganglion neurons in awake rats. Journal of Neurophysiology. 2009;101:836–886. doi: 10.1152/jn.90655.2008
|
[15] | Shortland PJ, DeMaro JA, Jacquin MF. Trigeminal structure-function relationships: A reevaluation based on long-range staining of a large sample of brainstem a beta fibers. Somatosensory & Motor Research. 1995;12:249–275. doi: 10.3109/08990229509093661
|
[16] | Sakurai K, Akiyama M, Cai B, Scott A, Han B- X, et al. The organization of submodality-specific touch afferent inputs in the vibrissa column. Cell Reports. 2013;5:87–98. doi: 10.1016/j.celrep.2013.08.051. pmid:24120861
|
[17] | Mehta SB, Whitmer D, Figueroa R, Williams BA, Kleinfeld D. Active spatial perception in the vibrissa scanning sensorimotor system. Public Library of Science Biology. 2007;5:309–322. doi: 10.1371/journal.pbio.0050015
|
[18] | O'Connor DH, Clack NG, Huber D, Komiyama T, Myers EW, et al. Vibrissa-based object localization in head-fixed mice. Journal of Neuroscience. 2010;30:1947–1967. doi: 10.1523/JNEUROSCI.3762-09.2010. pmid:20130203
|
[19] | Kleinfeld D, Deschênes M. Neuronal basis for object location in the vibrissa scanning sensorimotor system. Neuron. 2011;72:455–468. doi: 10.1016/j.neuron.2011.10.009. pmid:22078505
|
[20] | Curtis JC, Kleinfeld D. Phase-to-rate transformations encode touch in cortical neurons of a scanning sensorimotor system. Nature Neuroscience. 2009;12:492–501. doi: 10.1038/nn.2283. pmid:19270688
|
[21] | O'Connor DH, Hires SA, Guo ZV, Li N, Yu J, et al. Neural coding during active somatosensation revealed using illusory touch. Nature Neuroscience. 2013;16:958–965. doi: 10.1038/nn.3419. pmid:23727820
|
[22] | Kleinfeld D, Deschênes M, Wang F, Moore JD. More than a rhythm of life: Breathing as a binder of orofacial sensation. Nature Neurocience. 2014;15:647–651. doi: 10.1038/nn.3693
|
[23] | Skolnick MI (1962) Introduction to RADAR Systems. New York: McGraw-Hill.
|
[24] | Finn IM, Priebe NJ, Ferster D. The emergence of contrast-invariant orientation tuning in simple cells of cat visual cortex. Neuron. 2007;54:137–152. pmid:17408583 doi: 10.1016/j.neuron.2007.02.029
|
[25] | Bosman LWJ, Houweling AR, Owens CB, Tanke N, Shevchouk OT, et al. Anatomical pathways involved in generating and sensing rhythmic whisker movements. Frontiers in Integrative Neuroscience. 2011;5:1. doi: 10.3389/fnint.2011.00053
|
[26] | Kleinfeld D, Berg RW, O'Connor SM. Anatomical loops and their electrical dynamics in relation to whisking by rat. Somatosensory and Motor Research. 1999;16:69–88. pmid:10449057 doi: 10.1080/08990229970528
|
[27] | Yu C, Derdikman D, Haidarliu S, Ahissar E. Parallel thalamic pathways for whisking and touch signals in the rat. Public Library of Science Biology. 2006;4:e124. doi: 10.1371/journal.pbio.0040124
|
[28] | Waite PME. The responses of cells in the rat thalamus to mechanical movements of the whiskers. Journal of Physiology. 1973;228:541–561. pmid:4687104 doi: 10.1113/jphysiol.1973.sp010099
|
[29] | Henneman E. Relation between size of neurons and their susceptibility to discharge. Science. 1957;126:1345–1347. pmid:13495469 doi: 10.1126/science.126.3287.1345
|
[30] | Simons DJ, Kyriazi HT. Thalamocortical response transformations in simulated whisker barrels. Journal of Neuroscience. 1993;13:1601–1615. pmid:8463838
|
[31] | Pierret T, Lavallee P, Deschênes M. Parallel streams for the relay of vibrissal information through thalamic barreloids. Journal of Neuroscience. 2000;20:7455–7462. pmid:11007905
|
[32] | Veinante P, Deschênes M. Single- and multi-whisker channels in the ascending projections from the principal trigeminal nucleus in the rat. Journal of Neuroscience. 1999;19:5085–5095. pmid:10366641
|
[33] | Chapin JK, Nicolelis M. Spatiotemporal structure of somatosensory responses of many-neuron ensembles in the rat ventral posterior medial nucleus of the thalamus. Journal of Neuroscience. 1994;14:3511–3532. pmid:8207469
|
[34] | Khatri V, Bermejo R, Brumberg JC, Zeigler HP. Whisking in air: Encoding of kinematics by VPM neurons in awake rats. Somatosensory and Motor Research. 2010;27:11–20. doi: 10.3109/08990220.2010.502381
|
[35] | Trageser JC, Burke KA, Masri R, Li Y, Sellers L, et al. State-dependent gating of sensory inputs by zona incerta. Journal of Neurophysiology. 2006;96:1456–1463. pmid:16775205 doi: 10.1152/jn.00423.2006
|
[36] | Lavallee P, Urbain N, Dufresne C, Bokor H, Acsady L, et al. Feedforward inhibitory control of sensory information in higher-order thalamic nuclei. Journal of Neuroscience. 2005;25:7489–7498. pmid:16107636 doi: 10.1523/jneurosci.2301-05.2005
|
[37] | Diamond ME, Armstrong-James M, Ebner FF. Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus. Journal of Comparative Neurology. 1992;318:462–476. pmid:1578013 doi: 10.1002/cne.903180410
|
[38] | Masri R, Bezdudnaya T, Trageser JC, Keller A. Encoding of stimulus frequency and sensor motion in the posterior medial thalamic nucleus. Journal of Neurophysiology. 2008;100:681–689. doi: 10.1152/jn.01322.2007. pmid:18234976
|
[39] | Hill DN, Bermejo R, Zeigler HP, Kleinfeld D. Biomechanics of the vibrissa motor plant in rat: Rhythmic whisking consists of triphasic neuromuscular activity. Journal of Neuroscience. 2008;28:3438–3455. doi: 10.1523/JNEUROSCI.5008-07.2008. pmid:18367610
|
[40] | Mitchinson B, Grant RA, Arkley K, Rankov V, Perkn I, et al. Active vibrissal sensing in rodents and marsupials. Philosophical Transaction of the Royal Society of London B—Biological Science. 2011;366:3037–3048. doi: 10.1098/rstb.2011.0156
|
[41] | Matthews DW, Deschênes M, Furuta T, Moore JD, Wang F, et al. Feedback in the brainstem: An excitatory disynaptic pathway for control of whisking. Journal of Comparative Neurology. 2015;523:921–942. doi: 10.1002/cne.23724. pmid:25503925
|
[42] | Granit R (1970) The Basis of Motor Control. London: Academic Press.
|
[43] | Rokx JT, van Willigen JD, Jansen HW. Muscle fibre types and muscle spindles in the jaw musculature of the rat. Archives of Oral Biology. 1984;29:25–31. pmid:6229238 doi: 10.1016/0003-9969(84)90038-4
|
[44] | Klein B, Rhoades R. The representation of whisker follicle intrinsic musculature in the facial motor nucleus of the rat. Journal of Comparative Neurology. 1985;232:55–69. pmid:3973083 doi: 10.1002/cne.902320106
|
[45] | Takatoh J, Nelson A, Zhou X, Bolton MM, Ehlers MD, et al. New modules are added to vibrissal premotor circuitry with the emergence of exploratory whisking. Neuron. 2013;77:346–360. doi: 10.1016/j.neuron.2012.11.010. pmid:23352170
|
[46] | Sessle BJ. Modulation of alpha and gamma trigeminal motoneurons by various peripheral stimuli. Experimental Neurology. 1977;54:323–339. pmid:838021 doi: 10.1016/0014-4886(77)90273-4
|
[47] | Sessle BJ. Identification of alpha and gamma trigeminal motoneurons and effects of stimulation of amygdala, cerebellum, and cerebral cortex. Experimental Neurology. 1977;54:303–322. pmid:838020 doi: 10.1016/0014-4886(77)90272-2
|
[48] | Friese A, Kaltschmidt JA, Ladle DR, Sigrist M, Jessell TM, et al. Gamma and alpha motor neurons distinguished by expression of transcription factor Err3. Proceedings of the National Academy of Sciences USA. 2009;106:13588–13593. doi: 10.1073/pnas.0906809106
|
[49] | Hill DN, Curtis JC, Moore JD, Kleinfeld D. Primary motor cortex reports efferent control of vibrissa position on multiple time scales. Neuron. 2011;72:344–356. doi: 10.1016/j.neuron.2011.09.020. pmid:22017992
|
[50] | Moore* JD, Deschênes* M, Furuta T, Huber D, Smear MC, et al. Hierarchy of orofacial rhythms revealed through whisking and breathing. Nature. 2013;469:53–57. doi: 10.1038/nature12076
|
[51] | Batschelet E (1981) Circular statistics in biology. London: Academic Press.
|
[52] | Poulet JF, Fernandez LM, Crochet S, Petersen CC. Thalamic control of cortical states. Narture Neuroscience. 2012;15:370–372. doi: 10.1038/nn.3035. pmid:22267163
|
[53] | Ahissar E, Sosnik R, Haidarliu S. Transformation from temporal to rate coding in a somatosensory thalamocortical pathway. Nature. 2000;406:302–306. pmid:10917531 doi: 10.1038/35018568
|
[54] | Sosnik R, Haidarliu S, Ahissar E. Temporal frequency of whisker movement. I. Representations in brain stem and thalamus. Journal of Neurophysiology. 2001;86:339–353. pmid:11431515
|
[55] | Diamond ME, Armstrong-James M, Budway MJ, Ebner FF. Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus: Dependence on the barrel field cortex. Journal of Comparative Neurology. 1992;319:66–84. pmid:1592906 doi: 10.1002/cne.903190108
|
[56] | Mameli O, Stanzani S, Russo A, Romeo R, Pellitteri R, et al. Hypoglossal nuclei participation in rat mystacial pad control. Pflugers Archives. 2008;456:1189–1198. doi: 10.1007/s00424-008-0472-y
|
[57] | Mameli O, Stanzani S, Mulliri G, Pellitteri R, Caria MA, et al. Role of the trigeminal mesencephalic nucleus in rat whisker pad proprioception. Behavior and Brian Function. 2010;6:1–12. doi: 10.1186/1744-9081-6-69
|
[58] | Rice FL. Structure, vascularization, and innervation of the mystacial pad of the rat as revealed by the lectin Griffonia simplicifolia. Journal of Comparative Neurology. 1993;337:386–399. pmid:8282849 doi: 10.1002/cne.903370304
|
[59] | Szwed M, Bagdasarian K, Ahissar E. Coding of vibrissal active touch. Neuron. 2003;40:621–630. pmid:14642284 doi: 10.1016/s0896-6273(03)00671-8
|
[60] | Leiser SC, Moxon KA. Responses of trigeminal ganglion neurons during natural whisking behaviors in the awake rat. Neuron. 2007;53:117–133. pmid:17196535 doi: 10.1016/j.neuron.2006.10.036
|
[61] | Brown AWS, Waite PME. Responses in the rat thalamus to whisker movements produced by motor nerve stimulation. Journal of Physiology. 1974;238:387–401. pmid:4840852 doi: 10.1113/jphysiol.1974.sp010531
|
[62] | Urbain N, Deschênes M. A new thalamic pathway of vibrissal information modulated by the motor cortex. Journal of Neuroscience. 2007;27:12407–12412. pmid:17989305 doi: 10.1523/jneurosci.2914-07.2007
|
[63] | Gentet LJ, Avermann M, Matyas F, Staiger JF, Petersen CCH. Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron. 2010;65:422–435. doi: 10.1016/j.neuron.2010.01.006. pmid:20159454
|
[64] | de Kock CP, Sakmann B. Spiking in primary somatosensory cortex during natural whisking in awake head-restrained rats is cell-type specific. Proceedings of the National Academy of Sciences USA. 2009;106:16446–16450. doi: 10.1073/pnas.0904143106
|
[65] | Timofeeva E, Merette C, Emond C, Lavallee P, Deschênes M. A map of angular tuning preference in thalamic barreloids. Journal of Neuroscience. 2003;23:10717–10723. pmid:14627657
|
[66] | Ahrens KF, Levine H, Suhl H, Kleinfeld D. Spectral mixing of rhythmic neuronal signals in sensory cortex. Proceedings of the National Academy of Sciences USA. 2002;99:15176–15181. doi: 10.1073/pnas.222547199
|
[67] | Masri R, Bezdudnaya T, Trageser JC, Keller A. Reply to Ahissar et al. Journal of Neurophysiology. 2008;100:1155–1157. doi: 10.1152/jn.90633.2008
|
[68] | Ahissar E, Golomb D, Haidarliu S, Sosnik R, Yu C. Latency coding in POm: Importance of parametric regimes. Journal of Neurophysiology. 2008;100:1152–1154. doi: 10.1152/jn.90477.2008. pmid:18697998
|
[69] | Urbain N, Deschênes M. Motor cortex gates vibrissal responses in a thalamocortical projection pathway. Neuron. 2007;56:714–725. pmid:18031687 doi: 10.1016/j.neuron.2007.10.023
|
[70] | Golomb D, Ahissar E, Kleinfeld D. Coding of stimulus frequency by latency in thalamic networks through the interplay of GABAB-mediated feedback and stimulus shape. Journal of Neurophysiology. 2005;95:1735–1750. pmid:16267113 doi: 10.1152/jn.00734.2005
|
[71] | Furuta T, Nakamura K, Deschenes M. Angular tuning bias of vibrissa-responsive cells in the paralemniscal pathway. Journal of Neuroscience. 2006;26:10548–10557. pmid:17035540 doi: 10.1523/jneurosci.1746-06.2006
|
[72] | Carvell GE, Miller SA, Simons DJ. The relationship of vibrissal motor cortex unit activity to whisking in the awake rat. Somatosensory and Motor Research. 1996;13:115–127. pmid:8844960 doi: 10.3109/08990229609051399
|
[73] | Friedman DP, Jones EG. Thalamic input to areas 3a and 2 in monkeys. Journal of Neurophysiology. 1981;45:59–85. pmid:7205345
|
[74] | Francis JT, Xu S, Chapin JK. Proprioceptive and cutaneous representations in the rat ventral posterolateral thalamus. Journal of Neurophysiology. 2008;99:2291–2304. doi: 10.1152/jn.01206.2007. pmid:18287546
|
[75] | Bae YC, Choi BJ, Lee MG, Lee HJ, Park KP, et al. Quantitative ultrastructural analysis of glycine‐and γ‐aminobutyric acid‐immunoreactive terminals on trigeminal α‐and γ‐motoneuron somata in the rat. Journal of Comparative Neurology. 2002;442:308–319. pmid:11793336 doi: 10.1002/cne.10092
|
[76] | Huet LA, Schroeder CL, Hartmann MJZ. Tactile signals transmitted by the vibrissa during active whisking behavior. Journal of Neurophysiology. 2015. In press. doi: 10.1152/jn.00011.2015
|
[77] | Hires SA, Pammer L, Svoboda K, Golomb D. Tapered whiskers are required for active tactile sensation. Elife. 2013;2:e01350. doi: 10.7554/eLife.01350. pmid:24252879
|
[78] | Daunicht WJ. Proprioception in extraocular muscles of the rat. Brain Research. 1983;278:291–294. pmid:6640318 doi: 10.1016/0006-8993(83)90257-3
|
[79] | Porter JD, Guthrie BL, Sparks DL. Innervation of monkey extraocular muscles: Localization of sensory and motor neurons by retrograde transport of horseradish peroxidase. Journal of Comparative Neurology. 1983;218:208–219. pmid:6604075 doi: 10.1002/cne.902180208
|
[80] | Ono T, Nakamura K, Nishijo H, Fukuda M. Hypothalamic neuron involvement in integration of reward, aversion and cue signals. Journal of Neurophysiology. 1986;56:63–79. pmid:3746401
|
[81] | Kleinfeld D, Sachdev RNS, Merchant LM, Jarvis MR, Ebner FF. Adaptive filtering of vibrissa input in motor cortex of rat. Neuron. 2002;34:1021–1034. pmid:12086648 doi: 10.1016/s0896-6273(02)00732-8
|
[82] | Tsai PS, Kaufhold J, Blinder P, Friedman B, Drew P, et al. Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of cell nuclei and microvessels. Journal of Neuroscience. 2009;18:14553–14570. doi: 10.1523/jneurosci.3287-09.2009
|
[83] | Ganguly K, Kleinfeld D. Goal-directed whisking behavior increases phase-locking between vibrissa movement and electrical activity in primary sensory cortex in rat. Proceedings of the National Academy of Sciences USA. 2004;101:12348–12353. doi: 10.1073/pnas.0308470101
|
[84] | Hill DN, Mehta SB, Kleinfeld D. Quality metrics to accompany spike sorting of extracellular signals. Journal of Neuroscience. 2011;31:8699–8705. doi: 10.1523/JNEUROSCI.0971-11.2011. pmid:21677152
|
[85] | Fee MS, Mitra PP, Kleinfeld D. Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and non-Gaussian variability. Journal of Neuroscience Methods. 1996;69:175–188. pmid:8946321 doi: 10.1016/s0165-0270(96)00050-7
|
[86] | Pinault D. A novel single-cell staining procedure performed in vivo under elecrtrophysiological control: Morpho-functional features of juxtacellularly labed thalamic cells and other central neurons with biocytin or Neurobiotin. Journal of Neuroscience Methods. 1996;65:113–136. pmid:8740589 doi: 10.1016/0165-0270(95)00144-1
|
[87] | Moore JM, Deschênes M, Kleinfeld D. Juxtacellular monitoring of single neuronal units from sub-cortical brain structures in alert, head-restrained rats. Journal of Visualized Experiments. 2015:98, doi:3791151453. doi: 10.3791/51453
|
[88] | Bourassa J, Pinault D, Deschênes M. Corticothalamic projections from the cortical barrel field to the somatosensory thalamus in rats: A single-fibre study using biocytin as an anterograde tracer. European Journal of Neuroscience. 1995;7:19–30. pmid:7711933 doi: 10.1111/j.1460-9568.1995.tb01016.x
|
[89] | Premack D, Shanab ME. Rats prefer the home cage to the runway following intermittent but not consistent reinforcement. Nature. 1968;125:288–289. doi: 10.1038/217288a0
|
[90] | Berens P. CircStat: A MATLAB toolbox for circular statistics. Journal of Statistical Software. 2009;31:1–21.
|