全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Biology  2015 

Short Lives with Long-Lasting Effects: Filopodia Protrusions in Neuronal Branching Morphogenesis

DOI: 10.1371/journal.pbio.1002241

Full-Text   Cite this paper   Add to My Lib

Abstract:

The branching behaviors of both dendrites and axons are part of a neuronal maturation process initiated by the generation of small and transient membrane protrusions. These are highly dynamic, actin-enriched structures, collectively called filopodia, which can mature in neurons to form stable branches. Consequently, the generation of filopodia protrusions is crucial during the formation of neuronal circuits and involves the precise control of an interplay between the plasma membrane and actin dynamics. In this issue of PLOS Biology, Hou and colleagues identify a Ca2+/CaM-dependent molecular machinery in dendrites that ensures proper targeting of branch formation by activation of the actin nucleator Cobl.

References

[1]  Portera-Cailliau C, Pan DT, Yuste R. Activity-regulated dynamic behavior of early dendritic protrusions: evidence for different types of dendritic filopodia. J Neurosci. 2003;23: 7129–7142. pmid:12904473
[2]  Korobova F, Svitkina T. Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis. Mol Biol Cell. 2010;21: 165–176. doi: 10.1091/mbc.E09-07-0596. pmid:19889835
[3]  Hotulainen P, Hoogenraad CC. Actin in dendritic spines: connecting dynamics to function. J Cell Biol. 2010;189: 619–629. doi: 10.1083/jcb.201003008. pmid:20457765
[4]  Gallo G. Mechanisms underlying the initiation and dynamics of neuronal filopodia: from neurite formation to synaptogenesis. Int Rev Cell Mol Biol. 2013;301: 95–156. doi: 10.1016/B978-0-12-407704-1.00003-8. pmid:23317818
[5]  Hotulainen P, Llano O, Smirnov S, Tanhuanp?? K, Faix J, Rivera C, et al. Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis. J Cell Biol. 2009;185: 323–339. doi: 10.1083/jcb.200809046. pmid:19380880
[6]  Heiman MG, Shaham S. Twigs into branches: how a filopodium becomes a dendrite. Curr Opin Neurobiol. 2010;20: 86–91. doi: 10.1016/j.conb.2009.10.016. pmid:19939665
[7]  Kulkarni VA, Firestein BL. The dendritic tree and brain disorders. Mol Cell Neurosci. 2012; 50: 10–20. doi: 10.1016/j.mcn.2012.03.005. pmid:22465229
[8]  Niell CM, Meyer MP, Smith SJ. In vivo imaging of synapse formation on a growing dendritic arbor. Nat Neurosci. 2004;7: 254–260. pmid:14758365 doi: 10.1038/nn1191
[9]  Dong X, Shen K, Bülow HE. Intrinsic and extrinsic mechanisms of dendritic morphogenesis. Annu Rev Physiol. 2015; 77: 271–300. doi: 10.1146/annurev-physiol-021014-071746. pmid:25386991
[10]  Andreae LC, Burrone J. The role of neuronal activity and transmitter release on synapse formation. Curr Opin Neurobiol. 2014; 27: 47–52. doi: 10.1016/j.conb.2014.02.008. pmid:24632375
[11]  Qualmann B, Kessels MM. New players in actin polymerization—WH2-domain-containing actin nucleators. Trends Cell Biol. 2009;19: 276–285. doi: 10.1016/j.tcb.2009.03.004. pmid:19406642
[12]  Goh WI, Ahmed S. mDia1-3 in mammalian filopodia. Commun Integr Biol. 2012;5: 340–344. doi: 10.4161/cib.20214. pmid:23060957
[13]  Chesarone MA, Goode BL. Actin nucleation and elongation factors: mechanisms and interplay. Curr Opin Cell Biol. 2010;21: 28–37. doi: 10.1016/j.ceb.2008.12.001
[14]  Campellone KG1, Welch MD. A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol. 2010;11: 237–251. doi: 10.1038/nrm2867. pmid:20237478
[15]  Gorelik R, Yang C, Kameswaran V, Dominguez R, Svitkina T. Mechanisms of plasma membrane targeting of formin mDia2 through its amino terminal domains. Mol Biol Cell. 2011;22: 189–201 doi: 10.1091/mbc.E10-03-0256. pmid:21119010
[16]  Ahuja R, Pinyol R, Reichenbach N, Custer L, Klingensmith J, Kessels MM, et al. Cordon-bleu is an actin nucleation factor and controls neuronal morphology. Cell. 2007;131: 337–350. pmid:17956734 doi: 10.1016/j.cell.2007.08.030
[17]  Hou W, Izadi M, Nemitz S, Haag N, Kessels MM, Qualmann B. The actin nucleator Cobl is controlled by calcium and calmodulin. PLoS Biol. 2015 13 (9): e1002233. doi: 10.1371/journal.pbio.1002233.
[18]  Lee K, Gallop JL, Rambani K, Kirschner MW. Self-assembly of filopodia-like structures on supported lipid bilayers. Science. 2010;329: 1341–1345. doi: 10.1126/science.1191710. pmid:20829485
[19]  Wu CY, Lin MW, Wu DC, Huang YB, Huang HT, Chen CL. The role of phosphoinositide-regulated actin reorganization in chemotaxis and cell migration. Br J Pharmacol. 2014;171: 5541–5554. doi: 10.1111/bph.12777. pmid:25420930
[20]  Ketschek A, Gallo G. Nerve growth factor induces axonal filopodia through localized microdomains of phosphoinositide 3-kinase activity that drive the formation of cytoskeletal precursors to filopodia. J Neurosci. 2010;30: 12185–12197. doi: 10.1523/JNEUROSCI.1740-10.2010. pmid:20826681
[21]  Spillane M, Ketschek A, Jones SL, Korobova F, Marsick B, Lanier L, et al. The actin nucleating Arp2/3 complex contributes to the formation of axonal filopodia and branches through the regulation of actin patch precursors to filopodia. Dev Neurobiol. 2011;71: 747–758. doi: 10.1002/dneu.20907. pmid:21557512
[22]  Lohmann C, Finski A, Bonhoeffer T. Local calcium transients regulate the spontaneous motility of dendritic filopodia. Nat Neurosci. 2005;8: 305–312. pmid:15711541 doi: 10.1038/nn1406
[23]  Andreae LC, Burrone J. Spontaneous Neurotransmitter Release Shapes Dendritic Arbors via Long-Range Activation of NMDA Receptors. Cell Rep. 2015;10: 873–882. doi: 10.1016/j.celrep.2015.01.032

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133