[1] | Portera-Cailliau C, Pan DT, Yuste R. Activity-regulated dynamic behavior of early dendritic protrusions: evidence for different types of dendritic filopodia. J Neurosci. 2003;23: 7129–7142. pmid:12904473
|
[2] | Korobova F, Svitkina T. Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis. Mol Biol Cell. 2010;21: 165–176. doi: 10.1091/mbc.E09-07-0596. pmid:19889835
|
[3] | Hotulainen P, Hoogenraad CC. Actin in dendritic spines: connecting dynamics to function. J Cell Biol. 2010;189: 619–629. doi: 10.1083/jcb.201003008. pmid:20457765
|
[4] | Gallo G. Mechanisms underlying the initiation and dynamics of neuronal filopodia: from neurite formation to synaptogenesis. Int Rev Cell Mol Biol. 2013;301: 95–156. doi: 10.1016/B978-0-12-407704-1.00003-8. pmid:23317818
|
[5] | Hotulainen P, Llano O, Smirnov S, Tanhuanp?? K, Faix J, Rivera C, et al. Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis. J Cell Biol. 2009;185: 323–339. doi: 10.1083/jcb.200809046. pmid:19380880
|
[6] | Heiman MG, Shaham S. Twigs into branches: how a filopodium becomes a dendrite. Curr Opin Neurobiol. 2010;20: 86–91. doi: 10.1016/j.conb.2009.10.016. pmid:19939665
|
[7] | Kulkarni VA, Firestein BL. The dendritic tree and brain disorders. Mol Cell Neurosci. 2012; 50: 10–20. doi: 10.1016/j.mcn.2012.03.005. pmid:22465229
|
[8] | Niell CM, Meyer MP, Smith SJ. In vivo imaging of synapse formation on a growing dendritic arbor. Nat Neurosci. 2004;7: 254–260. pmid:14758365 doi: 10.1038/nn1191
|
[9] | Dong X, Shen K, Bülow HE. Intrinsic and extrinsic mechanisms of dendritic morphogenesis. Annu Rev Physiol. 2015; 77: 271–300. doi: 10.1146/annurev-physiol-021014-071746. pmid:25386991
|
[10] | Andreae LC, Burrone J. The role of neuronal activity and transmitter release on synapse formation. Curr Opin Neurobiol. 2014; 27: 47–52. doi: 10.1016/j.conb.2014.02.008. pmid:24632375
|
[11] | Qualmann B, Kessels MM. New players in actin polymerization—WH2-domain-containing actin nucleators. Trends Cell Biol. 2009;19: 276–285. doi: 10.1016/j.tcb.2009.03.004. pmid:19406642
|
[12] | Goh WI, Ahmed S. mDia1-3 in mammalian filopodia. Commun Integr Biol. 2012;5: 340–344. doi: 10.4161/cib.20214. pmid:23060957
|
[13] | Chesarone MA, Goode BL. Actin nucleation and elongation factors: mechanisms and interplay. Curr Opin Cell Biol. 2010;21: 28–37. doi: 10.1016/j.ceb.2008.12.001
|
[14] | Campellone KG1, Welch MD. A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol. 2010;11: 237–251. doi: 10.1038/nrm2867. pmid:20237478
|
[15] | Gorelik R, Yang C, Kameswaran V, Dominguez R, Svitkina T. Mechanisms of plasma membrane targeting of formin mDia2 through its amino terminal domains. Mol Biol Cell. 2011;22: 189–201 doi: 10.1091/mbc.E10-03-0256. pmid:21119010
|
[16] | Ahuja R, Pinyol R, Reichenbach N, Custer L, Klingensmith J, Kessels MM, et al. Cordon-bleu is an actin nucleation factor and controls neuronal morphology. Cell. 2007;131: 337–350. pmid:17956734 doi: 10.1016/j.cell.2007.08.030
|
[17] | Hou W, Izadi M, Nemitz S, Haag N, Kessels MM, Qualmann B. The actin nucleator Cobl is controlled by calcium and calmodulin. PLoS Biol. 2015 13 (9): e1002233. doi: 10.1371/journal.pbio.1002233.
|
[18] | Lee K, Gallop JL, Rambani K, Kirschner MW. Self-assembly of filopodia-like structures on supported lipid bilayers. Science. 2010;329: 1341–1345. doi: 10.1126/science.1191710. pmid:20829485
|
[19] | Wu CY, Lin MW, Wu DC, Huang YB, Huang HT, Chen CL. The role of phosphoinositide-regulated actin reorganization in chemotaxis and cell migration. Br J Pharmacol. 2014;171: 5541–5554. doi: 10.1111/bph.12777. pmid:25420930
|
[20] | Ketschek A, Gallo G. Nerve growth factor induces axonal filopodia through localized microdomains of phosphoinositide 3-kinase activity that drive the formation of cytoskeletal precursors to filopodia. J Neurosci. 2010;30: 12185–12197. doi: 10.1523/JNEUROSCI.1740-10.2010. pmid:20826681
|
[21] | Spillane M, Ketschek A, Jones SL, Korobova F, Marsick B, Lanier L, et al. The actin nucleating Arp2/3 complex contributes to the formation of axonal filopodia and branches through the regulation of actin patch precursors to filopodia. Dev Neurobiol. 2011;71: 747–758. doi: 10.1002/dneu.20907. pmid:21557512
|
[22] | Lohmann C, Finski A, Bonhoeffer T. Local calcium transients regulate the spontaneous motility of dendritic filopodia. Nat Neurosci. 2005;8: 305–312. pmid:15711541 doi: 10.1038/nn1406
|
[23] | Andreae LC, Burrone J. Spontaneous Neurotransmitter Release Shapes Dendritic Arbors via Long-Range Activation of NMDA Receptors. Cell Rep. 2015;10: 873–882. doi: 10.1016/j.celrep.2015.01.032
|