全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS Medicine  2015 

Assessing the Causal Relationship of Maternal Height on Birth Size and Gestational Age at Birth: A Mendelian Randomization Analysis

DOI: 10.1371/journal.pmed.1001865

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Observational epidemiological studies indicate that maternal height is associated with gestational age at birth and fetal growth measures (i.e., shorter mothers deliver infants at earlier gestational ages with lower birth weight and birth length). Different mechanisms have been postulated to explain these associations. This study aimed to investigate the casual relationships behind the strong association of maternal height with fetal growth measures (i.e., birth length and birth weight) and gestational age by a Mendelian randomization approach. Methods and Findings We conducted a Mendelian randomization analysis using phenotype and genome-wide single nucleotide polymorphism (SNP) data of 3,485 mother/infant pairs from birth cohorts collected from three Nordic countries (Finland, Denmark, and Norway). We constructed a genetic score based on 697 SNPs known to be associated with adult height to index maternal height. To avoid confounding due to genetic sharing between mother and infant, we inferred parental transmission of the height-associated SNPs and utilized the haplotype genetic score derived from nontransmitted alleles as a valid genetic instrument for maternal height. In observational analysis, maternal height was significantly associated with birth length (p = 6.31 × 10?9), birth weight (p = 2.19 × 10?15), and gestational age (p = 1.51 × 10?7). Our parental-specific haplotype score association analysis revealed that birth length and birth weight were significantly associated with the maternal transmitted haplotype score as well as the paternal transmitted haplotype score. Their association with the maternal nontransmitted haplotype score was far less significant, indicating a major fetal genetic influence on these fetal growth measures. In contrast, gestational age was significantly associated with the nontransmitted haplotype score (p = 0.0424) and demonstrated a significant (p = 0.0234) causal effect of every 1 cm increase in maternal height resulting in ~0.4 more gestational d. Limitations of this study include potential influences in causal inference by biological pleiotropy, assortative mating, and the nonrandom sampling of study subjects. Conclusions Our results demonstrate that the observed association between maternal height and fetal growth measures (i.e., birth length and birth weight) is mainly defined by fetal genetics. In contrast, the association between maternal height and gestational age is more likely to be causal. In addition, our approach that utilizes the genetic score derived from the nontransmitted maternal

References

[1]  Parsons TJ, Power C, Logan S, Summerbell CD. Childhood predictors of adult obesity: a systematic review. International journal of obesity and related metabolic disorders: journal of the International Association for the Study of Obesity. 1999;23 Suppl 8:S1–107.
[2]  Whincup PH, Kaye SJ, Owen CG, Huxley R, Cook DG, Anazawa S, et al. Birth weight and risk of type 2 diabetes: a systematic review. Jama. 2008;300(24):2886–97. doi: 10.1001/jama.2008.886. pmid:19109117
[3]  Barker DJ, Eriksson JG, Forsen T, Osmond C. Fetal origins of adult disease: strength of effects and biological basis. International journal of epidemiology. 2002;31(6):1235–9. pmid:12540728 doi: 10.1093/ije/31.6.1235
[4]  Loret de Mola C, Araujo de Franca GV, Quevedo LD, Horta BL. Low birth weight, preterm birth and small for gestational age association with adult depression: systematic review and meta-analysis. The British journal of psychiatry: the journal of mental science. 2014;205(5):340–7. doi: 10.1192/bjp.bp.113.139014
[5]  Yaghootkar H, Freathy RM. Genetic origins of low birth weight. Current opinion in clinical nutrition and metabolic care. 2012;15(3):258–64. doi: 10.1097/MCO.0b013e328351f543. pmid:22406741
[6]  Lunde A, Melve KK, Gjessing HK, Skjaerven R, Irgens LM. Genetic and environmental influences on birth weight, birth length, head circumference, and gestational age by use of population-based parent-offspring data. American journal of epidemiology. 2007;165(7):734–41. pmid:17311798 doi: 10.1093/aje/kwk107
[7]  Dougherty CR, Jones AD. The determinants of birth weight. American journal of obstetrics and gynecology. 1982;144(2):190–200. pmid:7114129
[8]  Strauss RS. Effects of the intrauterine environment on childhood growth. British medical bulletin. 1997;53(1):81–95. pmid:9158286 doi: 10.1093/oxfordjournals.bmb.a011608
[9]  Rondo PH, Ferreira RF, Nogueira F, Ribeiro MC, Lobert H, Artes R. Maternal psychological stress and distress as predictors of low birth weight, prematurity and intrauterine growth retardation. European journal of clinical nutrition. 2003;57(2):266–72. doi: 10.1038/sj.ejcn.1601526. pmid:12571658
[10]  Clausson B, Lichtenstein P, Cnattingius S. Genetic influence on birthweight and gestational length determined by studies in offspring of twins. BJOG: an international journal of obstetrics and gynaecology. 2000;107(3):375–81. doi: 10.1111/j.1471-0528.2000.tb13234.x
[11]  Magnus P, Berg K, Bjerkedal T, Nance WE. Parental determinants of birth weight. Clinical genetics. 1984;26(5):397–405. pmid:6499253 doi: 10.1111/j.1399-0004.1984.tb01079.x
[12]  Addo OY, Stein AD, Fall CH, Gigante DP, Guntupalli AM, Horta BL, et al. Maternal height and child growth patterns. The Journal of pediatrics. 2013;163(2):549–54. doi: 10.1016/j.jpeds.2013.02.002. pmid:23477997
[13]  Catalano PM, Kirwan JP. Maternal factors that determine neonatal size and body fat. Current diabetes reports. 2001;1(1):71–7. pmid:12762960 doi: 10.1007/s11892-001-0013-y
[14]  Han Z, Lutsiv O, Mulla S, McDonald SD. Maternal height and the risk of preterm birth and low birth weight: a systematic review and meta-analyses. Journal of obstetrics and gynaecology Canada: JOGC = Journal d'obstetrique et gynecologie du Canada: JOGC. 2012;34(8):721–46. pmid:22947405
[15]  Myklestad K, Vatten LJ, Magnussen EB, Salvesen KA, Romundstad PR. Do parental heights influence pregnancy length?: A population-based prospective study, HUNT 2. BMC pregnancy and childbirth. 2013;13:33. doi: 10.1186/1471-2393-13-33. pmid:23383756
[16]  Zhang X, Mumford SL, Cnattingius S, Schisterman EF, Kramer MS. Reduced birthweight in short or primiparous mothers: physiological or pathological? BJOG: an international journal of obstetrics and gynaecology. 2010;117(10):1248–54. doi: 10.1111/j.1471-0528.2010.02642.x
[17]  Chan BC, Lao TT. Maternal height and length of gestation: does this impact on preterm labour in Asian women? The Australian & New Zealand journal of obstetrics & gynaecology. 2009;49(4):388–92. doi: 10.1111/j.1479-828x.2009.01006.x
[18]  Morken NH, Kallen K, Jacobsson B. Predicting risk of spontaneous preterm delivery in women with a singleton pregnancy. Paediatric and perinatal epidemiology. 2014;28(1):11–22. doi: 10.1111/ppe.12087. pmid:24118026
[19]  Hindmarsh PC, Geary MP, Rodeck CH, Kingdom JC, Cole TJ. Factors predicting ante- and postnatal growth. Pediatric research. 2008;63(1):99–102. pmid:18043501 doi: 10.1203/pdr.0b013e31815b8e8f
[20]  Knight B, Shields BM, Turner M, Powell RJ, Yajnik CS, Hattersley AT. Evidence of genetic regulation of fetal longitudinal growth. Early human development. 2005;81(10):823–31. pmid:16085375 doi: 10.1016/j.earlhumdev.2005.06.003
[21]  Nahum GG, Stanislaw H. Relationship of paternal factors to birth weight. The Journal of reproductive medicine. 2003;48(12):963–8. pmid:14738024
[22]  To WW, Cheung W, Kwok JS. Paternal height and weight as determinants of birth weight in a Chinese population. American journal of perinatology. 1998;15(9):545–8. pmid:9890253 doi: 10.1055/s-2007-994058
[23]  Zhang X, Cnattingius S, Platt RW, Joseph KS, Kramer MS. Are babies born to short, primiparous, or thin mothers "normally" or "abnormally" small? The Journal of pediatrics. 2007;150(6):603–7, 7 e1-3. pmid:17517243 doi: 10.1016/j.jpeds.2007.01.048
[24]  Subramanian SV, Ackerson LK, Davey Smith G, John NA. Association of maternal height with child mortality, anthropometric failure, and anemia in India. Jama. 2009;301(16):1691–701. doi: 10.1001/jama.2009.548. pmid:19383960
[25]  Ozaltin E, Hill K, Subramanian SV. Association of maternal stature with offspring mortality, underweight, and stunting in low- to middle-income countries. Jama. 2010;303(15):1507–16. doi: 10.1001/jama.2010.450. pmid:20407060
[26]  Smith GD. Assessing intrauterine influences on offspring health outcomes: can epidemiological studies yield robust findings? Basic & clinical pharmacology & toxicology. 2008;102(2):245–56. doi: 10.1111/j.1742-7843.2007.00191.x
[27]  Paternoster L, Howe LD, Tilling K, Weedon MN, Freathy RM, Frayling TM, et al. Adult height variants affect birth length and growth rate in children. Human molecular genetics. 2011;20(20):4069–75. doi: 10.1093/hmg/ddr309. pmid:21757498
[28]  Wilcox MA, Newton CS, Johnson IR. Paternal influences on birthweight. Acta obstetricia et gynecologica Scandinavica. 1995;74(1):15–8. pmid:7856427 doi: 10.3109/00016349509009936
[29]  Brooks AA, Johnson MR, Steer PJ, Pawson ME, Abdalla HI. Birth weight: nature or nurture? Early human development. 1995;42(1):29–35. pmid:7671843 doi: 10.1016/0378-3782(95)01637-i
[30]  Spencer NJ, Logan S. The treatment of parental height as a biological factor in studies of birth weight and childhood growth. Archives of disease in childhood. 2002;87(3):184–7. pmid:12193422 doi: 10.1136/adc.87.3.184
[31]  Lawlor DA, Smith GD, O'Callaghan M, Alati R, Mamun AA, Williams GM, et al. Epidemiologic evidence for the fetal overnutrition hypothesis: findings from the mater-university study of pregnancy and its outcomes. American journal of epidemiology. 2007;165(4):418–24. pmid:17158475 doi: 10.1093/aje/kwk030
[32]  Smith GD, Steer C, Leary S, Ness A. Is there an intrauterine influence on obesity? Evidence from parent child associations in the Avon Longitudinal Study of Parents and Children (ALSPAC). Archives of disease in childhood. 2007;92(10):876–80. pmid:17595200 doi: 10.1136/adc.2006.104869
[33]  Eaves LJ, Pourcain BS, Smith GD, York TP, Evans DM. Resolving the effects of maternal and offspring genotype on dyadic outcomes in genome wide complex trait analysis ("M-GCTA"). Behav Genet. 2014;44(5):445–55. doi: 10.1007/s10519-014-9666-6. pmid:25060210
[34]  Smith GD, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Human molecular genetics. 2014;23(R1):R89–98. doi: 10.1093/hmg/ddu328. pmid:25064373
[35]  Smith GD, Ebrahim S. 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? International journal of epidemiology. 2003;32(1):1–22. pmid:12689998 doi: 10.1093/ije/dyg070
[36]  Smith GD, Leary S, Ness A, Lawlor DA. Challenges and novel approaches in the epidemiological study of early life influences on later disease. Advances in experimental medicine and biology. 2009;646:1–14. doi: 10.1007/978-1-4020-9173-5_1. pmid:19536658
[37]  Didelez V, Sheehan N. Mendelian randomization as an instrumental variable approach to causal inference. Statistical methods in medical research. 2007;16(4):309–30. pmid:17715159 doi: 10.1177/0962280206077743
[38]  Solovieff N, Cotsapas C, Lee PH, Purcell SM, Smoller JW. Pleiotropy in complex traits: challenges and strategies. Nature reviews Genetics. 2013;14(7):483–95. doi: 10.1038/nrg3461. pmid:23752797
[39]  Pierce BL, Ahsan H, Vanderweele TJ. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. International journal of epidemiology. 2011;40(3):740–52. doi: 10.1093/ije/dyq151. pmid:20813862
[40]  Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nature genetics. 2014;46(11):1173–86. doi: 10.1038/ng.3097. pmid:25282103
[41]  Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature. 2010;467(7317):832–8. doi: 10.1038/nature09410. pmid:20881960
[42]  Freeman G, Cowling BJ, Schooling CM. Power and sample size calculations for Mendelian randomization studies using one genetic instrument. International journal of epidemiology. 2013;42(4):1157–63. doi: 10.1093/ije/dyt110. pmid:23934314
[43]  Evans DM, Brion MJ, Paternoster L, Kemp JP, McMahon G, Munafo M, et al. Mining the human phenome using allelic scores that index biological intermediates. PLoS genetics. 2013;9(10):e1003919. doi: 10.1371/journal.pgen.1003919. pmid:24204319
[44]  Palmer TM, Lawlor DA, Harbord RM, Sheehan NA, Tobias JH, Timpson NJ, et al. Using multiple genetic variants as instrumental variables for modifiable risk factors. Statistical methods in medical research. 2012;21(3):223–42. doi: 10.1177/0962280210394459. pmid:21216802
[45]  Burgess S, Thompson SG. Use of allele scores as instrumental variables for Mendelian randomization. International journal of epidemiology. 2013;42(4):1134–44. doi: 10.1093/ije/dyt093. pmid:24062299
[46]  Lawlor DA, Timpson NJ, Harbord RM, Leary S, Ness A, McCarthy MI, et al. Exploring the developmental overnutrition hypothesis using parental-offspring associations and FTO as an instrumental variable. PLoS medicine. 2008;5(3):e33. doi: 10.1371/journal.pmed.0050033. pmid:18336062
[47]  Plunkett J, Doniger S, Orabona G, Morgan T, Haataja R, Hallman M, et al. An evolutionary genomic approach to identify genes involved in human birth timing. PLoS genetics. 2011;7(4):e1001365. doi: 10.1371/journal.pgen.1001365. pmid:21533219
[48]  Myking S, Boyd HA, Myhre R, Feenstra B, Jugessur A, Devold Pay AS, et al. X-chromosomal maternal and fetal SNPs and the risk of spontaneous preterm delivery in a Danish/Norwegian genome-wide association study. PLoS One. 2013;8(4):e61781. doi: 10.1371/journal.pone.0061781. pmid:23613933
[49]  Olsen J, Melbye M, Olsen SF, Sorensen TI, Aaby P, Andersen AM, et al. The Danish National Birth Cohort—its background, structure and aim. Scandinavian journal of public health. 2001;29(4):300–7. pmid:11775787 doi: 10.1177/14034948010290040201
[50]  Carvalho B, Bengtsson H, Speed TP, Irizarry RA. Exploration, normalization, and genotype calls of high-density oligonucleotide SNP array data. Biostatistics. 2007;8(2):485–99. pmid:17189563 doi: 10.1093/biostatistics/kxl042
[51]  Scharpf RB, Irizarry RA, Ritchie ME, Carvalho B, Ruczinski I. Using the R Package crlmm for Genotyping and Copy Number Estimation. Journal of statistical software. 2011;40(12):1–32. pmid:22523482
[52]  Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65. doi: 10.1038/nature11632. pmid:23128226
[53]  Delaneau O, Marchini J, Zagury JF. A linear complexity phasing method for thousands of genomes. Nature methods. 2012;9(2):179–81. doi: 10.1038/nmeth.1785
[54]  Fuchsberger C, Abecasis GR, Hinds DA. minimac2: faster genotype imputation. Bioinformatics. 2015;31(5):782–4. doi: 10.1093/bioinformatics/btu704. pmid:25338720
[55]  Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS genetics. 2009;5(6):e1000529. doi: 10.1371/journal.pgen.1000529. pmid:19543373
[56]  Yang J, Ferreira T, Morris AP, Medland SE, Genetic Investigation of ATC, Replication DIG, et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nature genetics. 2012;44(4):369–75, S1-3. doi: 10.1038/ng.2213. pmid:22426310
[57]  Palmer TM, Sterne JA, Harbord RM, Lawlor DA, Sheehan NA, Meng S, et al. Instrumental variable estimation of causal risk ratios and causal odds ratios in Mendelian randomization analyses. American journal of epidemiology. 2011;173(12):1392–403. doi: 10.1093/aje/kwr026. pmid:21555716
[58]  Barker DJ. The origins of the developmental origins theory. J Intern Med. 2007;261(5):412–7. pmid:17444880 doi: 10.1111/j.1365-2796.2007.01809.x
[59]  Jarvelin MR, Sovio U, King V, Lauren L, Xu B, McCarthy MI, et al. Early life factors and blood pressure at age 31 years in the 1966 northern Finland birth cohort. Hypertension. 2004;44(6):838–46. pmid:15520301 doi: 10.1161/01.hyp.0000148304.33869.ee
[60]  Sipola-Leppanen M, Vaarasmaki M, Tikanmaki M, Matinolli HM, Miettola S, Hovi P, et al. Cardiometabolic risk factors in young adults who were born preterm. American journal of epidemiology. 2015;181(11):861–73. doi: 10.1093/aje/kwu443. pmid:25947956
[61]  Villar J, Papageorghiou AT, Pang R, Ohuma EO, Cheikh Ismail L, Barros FC, et al. The likeness of fetal growth and newborn size across non-isolated populations in the INTERGROWTH-21st Project: the Fetal Growth Longitudinal Study and Newborn Cross-Sectional Study. Lancet Diabetes Endocrinol. 2014;2(10):781–92. doi: 10.1016/S2213-8587(14)70121-4. pmid:25009082
[62]  Zhang G, Karns R, Sun G, Indugula SR, Cheng H, Havas-Augustin D, et al. Finding missing heritability in less significant Loci and allelic heterogeneity: genetic variation in human height. PLoS One. 2012;7(12):e51211. doi: 10.1371/journal.pone.0051211. pmid:23251454
[63]  Zhang G, Karns R, Sun G, Indugula SR, Cheng H, Havas-Augustin D, et al. Extent of height variability explained by known height-associated genetic variants in an isolated population of the Adriatic coast of Croatia. PLoS One. 2011;6(12):e29475. doi: 10.1371/journal.pone.0029475. pmid:22216288
[64]  Griffiths LJ, Dezateux C, Cole TJ. Differential parental weight and height contributions to offspring birthweight and weight gain in infancy. International journal of epidemiology. 2007;36(1):104–7. pmid:16984935 doi: 10.1093/ije/dyl210
[65]  Lawson HA, Cheverud JM, Wolf JB. Genomic imprinting and parent-of-origin effects on complex traits. Nature reviews Genetics. 2013;14(9):609–17. doi: 10.1038/nrg3543. pmid:23917626
[66]  Glymour MM, Tchetgen Tchetgen EJ, Robins JM. Credible Mendelian randomization studies: approaches for evaluating the instrumental variable assumptions. American journal of epidemiology. 2012;175(4):332–9. doi: 10.1093/aje/kwr323. pmid:22247045
[67]  Box GEP. Non-Normality and Tests on Variances. Biometrika. 1953;40(3/4):318–35. doi: 10.1093/biomet/40.3-4.318

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133