Polymer blends have been obtained in the form of dimensionally stable and free standing films and their properties were characterized by different techniques. FTIR analysis and Raman spectroscopic analysis cleared the hydrogen bonding intermolecular interaction between –CONH2 groups in Poly Acrylamide (PAM) and C-O-C and –CH2OH group in Poly Ethylene Oxide (PEO). From Differential Scanning Calorimeter (DSC) the study shows that crystallinity is increasing with PEO wt%. From polymer interaction parameter we also show that the polymer blend is miscible. Thermal stability of films is investigated by Thermo Gravimetric Analysis (TGA) and derivative Thermo Gravimetric Analysis (DrTG). From UV-Vis absorption spectra, absorption band edge, direct/ indirect band gap and optical activation energy have been calculated.
References
[1]
Sauchez, I.C. (1983) Bulk and Interface-Thermodynamics of Polymer Alloys. Annual Review of Material Science, 13, 387-412. http://dx.doi.org/10.1146/annurev.ms.13.080183.002131
Florence, C. and Christine, J. (2013) Chitosan-Based Biomaterials for Tissue Engineering. European Polymer Journal, 49, 780-792. http://dx.doi.org/10.1016/j.eurpolymj.2012.12.009
[4]
Caykara, T. and Demirci, S. (2007) Thermal, Spectroscopic, and Mechanical Properties of Blend Films of Poly(N- Vinyl-2-Pyrrolidone) and Sodium Alginate. Polymer-Plastic Technology & Engineering, 46, 737-741.
http://dx.doi.org/10.1080/03602550701273971
[5]
Yuk, S.H., Cho, S.H. and Lee, H.B. (1995) pH-Sensitive Drug Delivery System Using O/W Emulsion. Journal of Controlled Release, 37, 69-74. http://dx.doi.org/10.1016/0168-3659(95)00065-G
[6]
Araya-Hermosilla, R., Broekhuis, A.A. and Picchioni, F. (2014) Reversible Polymer Networks Containing Covalent and Hydrogen Bonding Interactions. European Polymer Journal, 50, 127-134.
http://dx.doi.org/10.1016/j.eurpolymj.2013.10.014
[7]
Dean, K., Yu, L., Bateman, S. and Dong, Y.W. (2007) Gelatinized Starch/Biodegradable Polyester Blends: Processing, Morphology, and Properties. Journal of Applied Polymer Science, 103, 802-811. http://dx.doi.org/10.1002/app.25149
[8]
Mruthyunjaya, S. and Swamy, T.M. (2007) Studies on Miscibility of Sodium Alginate/Polyethylene Glycol Blends. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 44, 321-327.
http://dx.doi.org/10.1080/10601320601077492
[9]
Imre, B. and Pukánszky, B. (2013) Compatibilization in Bio-Based and Biodegradable Polymer Blends. European Polymer Journal, 49, 1215-1233. http://dx.doi.org/10.1016/j.eurpolymj.2013.01.019
[10]
Caulfield, M.J., Qiao, G.G. and Solomon, D.H. (2002) Some Aspects of the Properties and Degradation of Polyacrylamides. Chemical Reviews, 102, 3067-3084. http://dx.doi.org/10.1021/cr010439p
[11]
Lopatin, V.V., Askadskii, A.A., Peregudov, A.S. and Vasilev, V.G. (2005) Structure and Relaxation Properties of Medical-Purposed Polyacrylamide Gels. Journal of Applied Polymer Science, 96, 1043-1058.
http://dx.doi.org/10.1002/app.21477
[12]
Abdelhak, M., Abdelkarim, H. and Barbara, I. (2012) Effect of Plant Fiber-Polyacrylamide Blend on Retention and Evaporation Water at Arid and Semi-Arid Soils of Algeria. Journal of Chemistry and Chemical Engineering, 6, 7-17.
[13]
Wever, D.A., Picchioni, F. and Broekhuis, A.A. (2013) Branched Polyacrylamides: Synthesis and Effect of Molecular Architecture on Solution Rheology. European Polymer Journal, 49, 3289-3301.
http://dx.doi.org/10.1016/j.eurpolymj.2013.06.036
[14]
Gavrilin, M.V. (2001) Application of Polymers and Copolymers Based on Acrylic Acid and Ethylene Oxide in Pharmacy (A Review). Pharmaceutical Chemistry Journal, 35, 35-39. http://dx.doi.org/10.1023/A:1010402826818
[15]
Suzuki, H., Miyemoto, N., Masad, T., Hayakawa, E. and Ito, K. (1996) Solid Dispersion of Benidipine Hydrochloride. I. Preparation Using Different Solvant System and Dissolution Properties. Chemical and Pharmaceutical Bulletin (Tokyo), 44, 364-371. http://dx.doi.org/10.1248/cpb.44.364
[16]
Abderlrazek, E.M. and Ibrahim, H.S. (2010) Effect of Heprin Calcium Different Concentration on Some Physical Properties and Structure in PAM Matrix. Physica B, 405, 4339-4343. http://dx.doi.org/10.1016/j.physb.2010.07.038
[17]
Lee, K.Y. and Yuk, S.H. (2007) Polymeric Protein Delivery Systems. Progress in Polymer Science, 32, 669-697.
http://dx.doi.org/10.1016/j.progpolymsci.2007.04.001
[18]
Parmar, A.V., Bahadur, A., Kuperkar, K. and Bahadur, P. (2013) PEO-PPO Based Star-Block Copolymer T904 as pH Responsive Nanocarriers for Quercetin: Solubilization and Release Study. European Polymer Journal, 49, 12-21.
http://dx.doi.org/10.1016/j.eurpolymj.2012.10.009
[19]
Salmaso, S., Semenzato, A., Bersani, S., Matricardi, P., Rossi, F. and Caliceti, P. (2007) Cyclodextrin/PEG Based Hydrogels for Multi-Drug Delivery. International Journal of Pharmaceutics, 345, 42-50.
http://dx.doi.org/10.1016/j.ijpharm.2007.05.035
[20]
Pereira, A.G., Paulino, A.T., Rubira, A.F. and Muniz, E.C. (2010) Polymer-Polymer Miscibility in PEO/Cationic Starch and PEO/Hydrophobic Starch Blends. eXPRESS Polymer Letters, 4, 488-499.
http://dx.doi.org/10.3144/expresspolymlett.2010.62
[21]
Pereira, A.G., Paulino, A.T., Nakamura, C.V., Britta, E.A., Rubira, A.F. and Muniz, E.C. (2011) Effect of Starch Type on Miscibility in Poly(ethylene oxide) (PEO)/Starch Blends and Cytotoxicity Assays. Materials Science and Engineering C, 31, 443-451. http://dx.doi.org/10.1016/j.msec.2010.11.004
[22]
Sim, L.H., Gan, S.N., Chan, C.H., Kammer, H.W. and Yahya, R. (2009) Compatibility and Conductivity of LiClO4 Free and Doped Polyacrylate-Poly(ethylene oxide) Blends. Materials Research Innovations, 13, 278-281.
http://dx.doi.org/10.1179/143307509X440523
[23]
Kiran Kumar, K., Ravi, M., Pavani, Y., Bhavani, S., Sharma, A.K. and Narasimha Rao, V.V. (2011) Investigations on the Effect of Complexation of NaF Salt with Polymer Blend (PEO/PVP) Electrolytes on Ionic Conductivity and Optical Energy Band Gaps. Physica B, 406, 1706-1712. http://dx.doi.org/10.1016/j.physb.2011.02.010
[24]
Reddeppa, N., Sharma, A.K., Narsimha Rao, V.V. and Chen, W. (2013) Preparation and Characterization of Pure and KBr Doped Polymer Blend (PVC/PEO) Electrolyte Films. Microelectronic Engineering, 112, 57-62.
http://dx.doi.org/10.1016/j.mee.2013.05.015
[25]
Elashmawi, I.S., Abdelrazek, E.M., Hezma, A.M. and Rajeh, A. (2014) Modification and Development of Electrical and Magnetic Properties of PVA/PEO Incorporated with MnCl2. Physica B, 434, 57-63.
http://dx.doi.org/10.1016/j.physb.2013.10.038
[26]
Ferreiro, V., Douglas, J.F., Warren, J. and Karim, A. (2002) Nonequilibrium Pattern Formation in the Crystallization of Polymer Blend Films. Physical Review E, 65, Article ID: 042802. http://dx.doi.org/10.1103/physreve.65.042802
[27]
Ferreiro, V., Douglas, J.F., Warren, J. and Karim, A. (2002) Growth Pulsations in Symmetric Dendritic Crystallization in Thin Polymer Blend Films. Physical Review E, 65, Article ID: 051606.
http://dx.doi.org/10.1103/physreve.65.051606
[28]
Sawatari, C.H. and Kondo, T. (1999) Inter Chain Hydrogen Bonds in Blend Films of Poly(vinyl alcohol) and Its Derivatives with Poly(ethylene oxide). Macromolecules, 32, 1949-1955. http://dx.doi.org/10.1021/ma980900o
[29]
Zheng, H., Zheng, S. and Guo, Q. (1997) Thermosetting Polymer Blends of Unsaturated Polyester Resin and Poly(ethylene oxide). II. Hydrogen-Bonding Interaction, Crystallization Kinetics, and Morphology. Journal of Polymer Science A—Polymer Chemistry, 35, 3169-3179.
http://dx.doi.org/10.1002/(SICI)1099-0518(19971115)35:15<3169::AID-POLA10>3.0.CO;2-9
[30]
Vijayalakshmi, S.P. and Madras, G. (2006) Thermal Degradation of Water Soluble Polymers and Their Binary Blends. Journal of Applied Polymer Science, 101, 233-240. http://dx.doi.org/10.1002/app.23246
[31]
Vijayalakshmi, S.P., Raichar, A. and Madras, G. (2006) Thermal Degradation of Poly(ethylene oxide) and Poly Acrylamide with Ascorbic Acid. Journal of Applied Polymer Science, 101, 3067-3072.
http://dx.doi.org/10.1002/app.24115
[32]
Pielichowska, K., Glowinkowski, S., Lekki, J., Binias, D., Pielichowski, K. and Jenczy, J. (2008) PEO/Fatty Acid Blends for Thermal Energy Storage Materials-Structural/Morphological Features and Hydrogen Interactions. European Polymer Journal, 44, 3344-3360. http://dx.doi.org/10.1016/j.eurpolymj.2008.07.047
[33]
Coleman, M.M. and Moskala, E.J. (1983) FTi.r. Studies of Polymer Blends Containing the Poly(hydroxyl ether of bisphenol A) and Poly(ε-caprolactone). Polymer, 24, 251-257. http://dx.doi.org/10.1016/0032-3861(83)90258-6
[34]
Fernandez-Berridi, M.J., Valero, M., Deilarduya, A.M., Espi, E. and Iruin, J.J. (1993) Phenoxy Blends: An Approach to the Miscibility by FTi.r. and Chemical Modification of the Interacting Sites. Polymer, 34, 38-42.
http://dx.doi.org/10.1016/0032-3861(93)90280-N
[35]
Sowwan, M., Faroun, M., Musa, I., Ibrahim, I., Makharza, S., Sultan, W. and Dweik, H. (2008) Study on the Morphology of Polyacrylamide—Silica Fumed Nanocomposite Thin Films. International Journal of Physical Science, 3, 144-147.
[36]
Colthup, N.B., Daly, L.H. and Berley, S.E. (1990) Introduction to Infrared and Raman Spectroscopy. 3rd Edition, Academic Press Inc., Boston.
[37]
Chen, N. and Zhang, J. (2010) The Role of Hydrogen-Bonding Interaction in Poly(vinyl alcohol)/Poly(acrylic acid) Blending Solutions and Their Films. Chinese Journal of Polymer Science, 28, 903-911.
http://dx.doi.org/10.1007/s10118-010-9167-x
[38]
Patel, G. and Sureshkumar, M.B. (2013) Preparation of PAM/PVA Blending Films by Solution Cast Technique and Its Characterization: A Spectroscopic Study. Iranian Polymer Journal, 23, 153-162.
http://dx.doi.org/10.1007/s13726-013-0211-x
[39]
Guo, C., Liu, H., Wang, J. and Chen, J. (1999) Conformational Structure of Tri-Block Copolymers by FT-Raman and FTIR Spectroscopy. Journal of Colloid and Interface Science, 209, 368-373. http://dx.doi.org/10.1006/jcis.1998.5897
[40]
Bostan, M.S., Mutlu, E.C., Kazak, H., Keskin, S.S., Oner, E.T. and Eroglu, M.S. (2014) Comprehensive Characterization of Chitosan/PEO/Levan Ternary Blend Films. Carbohydrate Polymers, 102, 993-1000.
http://dx.doi.org/10.1016/j.carbpol.2013.09.096
[41]
Dong, J., Fredericks, P.M. and George, G.A. (1997) Studies of the Structure and Thermal Degradation of Poly(viny1 chloride)-Poly(N-vinyl-2-pyrrolidone) Blends by Using Raman and FTIR Emission Spectroscopy. Polymer Degradation and Stability, 58, 159-169. http://dx.doi.org/10.1016/S0141-3910(97)00040-2
[42]
Sundaraganesan, N., Puviarasan, N. and Mohan, S. (2001) Vibrational Spectra, Assignments and Normal Coordinate Calculation of Acrylamide. Talanta, 54, 233-241. http://dx.doi.org/10.1016/S0039-9140(00)00585-3
[43]
da costa, A.M.A. and Amada, A.M. (2000) Molecular Interaction/Lithium Perchlorate Hydrogel Composites. Polymer, 41, 5361-5365. http://dx.doi.org/10.1016/S0032-3861(99)00732-6
[44]
Jurkin, T. and Pucic, I. (2012) Poly(ethylene oxide) Irradiated in the Solid State, Melt and Aqueous Solution—A DSC and WAXD Study. Radiation Physics and Chemistry, 81, 1303-1308.
http://dx.doi.org/10.1016/j.radphyschem.2011.12.021
[45]
Shin, J.H., Kim, K.W., Ahn, H.J. and Ahn, J.H. (2002) Electrochemical Properties and Interfacial Stability of (PEO)10 LiCF3SO3-TinO2n-1 Composites Polymer Electrolytes for Lithium/Sulfur Battery. Journal of Material Science Engineering B, 95, 148-156. http://dx.doi.org/10.1016/S0921-5107(02)00226-X
[46]
John, R.D. (1965) Applications of Absorption Spectroscopy of Organic Compounds. Prentice-Hall Inc., Englewood Cliffs.
[47]
Srivastava, A.K. and Virk, H.S. (2000) Modification of Optical Response of Polyvinyl Acetate Induced by 250 keV D Exp+ Ion Bombardment. Journal of Polymer Materials (Netherlands), 17, 325-328.
[48]
Patel, G., Sureshkumar, M.B. and Patel, P. (2011) An Optical Characterization of PVA/PAM Polymer Blend. AIP Conference Proceedings, 1349, 166-167. http://dx.doi.org/10.1063/1.3605788
[49]
Kumar, R., Asad Ali, S., Mahur, A.K., Virk, H.S., Singh, F., Khan, S.A., Avasthi, D.K. and Prasad, R. (2008) Study of Optical Band Gap and Carbonaceous Clusters in Swift Heavy Ion Irradiated Polymers with UV-Vis Spectroscopy. Nuclear Instruments and Methods in Physics Research B, 266, 1788-1792.
http://dx.doi.org/10.1016/j.nimb.2008.01.010
[50]
Tauc, J., Grigorovici, R. and Vanku, A. (1966) Optical Properties and Electronic Structure of Amorphous Germanium. Physica status Solidi (b), 15, 627-637. http://dx.doi.org/10.1002/pssb.19660150224
[51]
Shahada, L., Kassem, M.E., Abdelkader, H.I. and Hassan, H.M. (1997) Optical and Electrical Properties of a New Polymer. Journal of Applied Polymer Science, 65, 1653-1657.
http://dx.doi.org/10.1002/(SICI)1097-4628(19970829)65:9<1653::AID-APP1>3.0.CO;2-E
[52]
Mohan, V.M., Raja, V., Balaji, B.P., Sharma, A.K. and Narasimha Rao, V.V.R. (2007) Structural, Electrical and Optical Properties of Pure and NaLaF4 Doped PEO Polymer Electrolyte Films. Journal of Polymer Research, 14, 283-290.
http://dx.doi.org/10.1007/s10965-007-9108-8
[53]
Balasubramanyam, V.A., Reddy, T.J.R., Sharma, A.K. and Narasimha Rao, V.V.R. (2007) Electrical, Optical, and Structural Characterization of Polymer Blend (PVC/PMMA) Electrolyte Films. Ionics, 13, 349-354.
http://dx.doi.org/10.1007/s11581-007-0124-9
[54]
Mott, N.F. and Davis, E.A. (1979) Electronic Processes in Non Crystalline Materials. 2nd Edition, Oxford University Press, London.
[55]
Kilarkaje, S., Manjunatha, V., Raghu, S., Ambika Prasad, M.V. and Devendrappa, H. (2011) Effect of 8 MeV Electron Irradiation on the Optical Properties of Doped Polymer Electrolyte Films. Journal of Physics D: Applied Physics, 44, Article ID: 105403. http://dx.doi.org/10.1088/0022-3727/44/10/105403
[56]
Nouh, S.A. (2004) Physical Changes Associated with Gamma Doses of PM-555 Solid-State Nuclear Track Detector. Radiation Measurement, 38, 167-172. http://dx.doi.org/10.1016/j.radmeas.2003.11.004
[57]
Singh, N.L., Sharma, A. and Avasthi, D.K. (2003) Effects of High Energy (MeV) Ion Beam Irradiation on Polyethylene Terephthalate. Nuclear Instruments and Methods in Physics Research B, 206, 1120-1123.
http://dx.doi.org/10.1016/S0168-583X(03)00935-2
[58]
Buttafava, A., Consolati, G., Di Landro, L. and Mariani, M. (2002) γ-Irradiation Effects on Polyethylene Terephthalate Studied by Positron Annihilation Lifetime Spectroscopy. Polymer, 43, 7477-7481.
http://dx.doi.org/10.1016/S0032-3861(02)00708-5
[59]
Mishra, R., Tripathy, S.P., Sinha, D., Dwivedi, K.K., Ghosh, S., Khathing, D.T., Muller, M., Fink, D. and Chung, W.H. (2000) Optical and Electrical Properties of Some Electron and Proton Irradiated Polymers. Nuclear Instruments and Methods in Physics Research B, 168, 59-64. http://dx.doi.org/10.1016/S0168-583X(99)00829-0
[60]
Lakshmi, G.B.V.S., Ali, V., Siddiqui, A.M., Kulriyac, P.K. and Zulfequar, M. (2009) Studies on Structural, Optical and Cluster Size of Poly(m-toluidine)-Polyvinyl Chloride Blends. Radiation Effect and Defects in Solids, 164, 162- 169. http://dx.doi.org/10.1080/10420150902764186
[61]
Patel, G., Sureshkumar, M.B., Singh, N.L. and Bhattacharya, S.S. (2010) Spectroscopic Correlation of Mechanical Properties of PVC/PMMA Polymer Blend. Journal of International Academy of Physical Sciences, 14, 91-100.
[62]
Chi, S.K. and Seung, M.O. (2001) Performance of Gel-Type Polymer Electrolytes According to the Affinity between Polymer Matrix and Plasticizing Solvent Molecules. Electrochimica Acta, 46, 1323-1331.
http://dx.doi.org/10.1016/S0013-4686(00)00727-1
[63]
Patel, G., Sureshkumar, M.B. and Patel, P. (2011) Structural, Optical and Mechanical Properties of PVC/PMMA Polymer Blend by Spectroscopic Techniques. AIP Conference Proceedings, 1391, 645-648.
http://dx.doi.org/10.1063/1.3643636
[64]
El-Kader, F.H., Gafer, S.A., Basha, A.F., Bannan, S.I. and Basha, M.A.F. (2010) Thermal and Optical Properties of Gelatin/Poly(vinyl alcohol) Blends. Journal of Applied Polymer Science, 118, 413-420.
http://dx.doi.org/10.1002/app.30841
[65]
Aggour, Y.A. (1996) Thermal Degradation Studies of Poly(ethylene glycol allenyl-methyl ether)s and Their Copolymers with Styrene. Polymer Degradation and Stability, 51, 265-269. http://dx.doi.org/10.1016/0141-3910(95)00205-7
[66]
Mishra, S., Bajpai, R., Katare, R. and Bajpai, A.K. (2006) Preparation, Characterization and Microhardness Study of Semi Interpenetrating Polymer Networks of Polyvinyl Alcohol and Crosslinked Polyacrylamide. Journal of Material Science: Materials in Medicine, 17, 1305-1313. http://dx.doi.org/10.1007/s10856-006-0605-9