全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Qualitative Properties and Numerical Solution of the Kolmogorov-Fisher Type Biological Population Task with Double Nonlinear Diffusion

DOI: 10.4236/jamp.2015.310153, PP. 1249-1255

Keywords: Double Nonlinearity, Cross-Diffusion, Biological Population, A Parabolic System of Quasilinear Equations, Convective Heat Transfer, Numerical Solution, Iterative Process, Self-Similar Solutions

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the present work we study the global solvability of the Kolmogorov-Fisher type biological population task with double nonlinear diffusion and qualitative properties of the solution of the task based on the self-similar analysis. In additional, in this paper we consider the model of two competing population with dual nonlinear cross-diffusion.

References

[1]  Aripov, M. (1988) Method Reference Equations for the Solution of Nonlinear Boundary Value Problems. Fan, Tashkent, 137.
[2]  Belotelov, N.V. and Lobanov, A.I. (1997) Population Model with Nonlinear Diffusion. Mathematic Modeling, 12, 43-56.
[3]  Volterra, V. (1976) The Mathematical Theory of the Struggle for Existence. Science, Moscow, 288.
[4]  Gause, G.F. (1934) About the Processes of Destruction of One Species by Another in the Populations of Ciliates. Zoological Journal, 1, 16-27.
[5]  Aripov, M. and Muhammadiev, J. (1999) Asymptotic Behaviour of Automodel Solutions for One System of Quasilinear Equations of Parabolic Type. France. Buletin Stiintific-Universitatea din Pitesti, Seria Matematica si Informatica, 19-40.
[6]  Aripov, M.M. and Muhamediyeva, D.K. (2013) To the Numerical Modeling of Self-Similar Solutions of Reaction-Diffusion System of the One Task of Biological Population of Kolmogorov-Fisher Type. International Journal of Engineering and Technology, 2, 281-286.
[7]  Aripov, M.M. and Muhamedieva, D.K. (2013) Approaches to the Solution of One Problem of Biological Populations. Issues of Computational and Applied Mathematics, 129, 22-31.
[8]  Murray, D.J. (1983) Nonlinear Diffusion Equations in Biology. Mir, Moscow, 397.
[9]  Huashui, Z. (2010) The Asymptotic Behavior of Solutions for a Class of Doubly Degenerate Nonlinear Parabolic Equations. Journal of Mathematical Analysis and Applications, 370, 1-10.
http://dx.doi.org/10.1016/j.jmaa.2010.05.003

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133