[1] | Levy WB, Desmond NL. The rules of elemental synaptic plasticity. In: Levy WB, Anderson JA, Lehmkule S, editors. Synaptic modification, neuron selectivity, and nervous system organization. Hillsdale, NJ: Erlbaum; 1985. p. 105–121.
|
[2] | Levy WB, Colbert CM, Desmond NL. Elemental adaptive processes of neurons and synapses: a statistical/computational perspective. In: Gluck MA, Rumelhart DE, editors. Neuroscience and Connectionist Theory. Hillsdale, NJ: Erlbaum; 1990. p. 187–235.
|
[3] | Dammasch IE, Wagner GP, Wolff JR. Self-stabilization of neuronal networks. Biological cybernetics. 1986; 54(4–5): 211–22. pmid:3017460 doi: 10.1007/bf00318417
|
[4] | Miller K. Equivalence of a sprouting-and-retraction model and correlation-based plasticity models of neural development. Neural Computation. 1998; 10(3): 529–47. pmid:9527832 doi: 10.1162/089976698300017647
|
[5] | Bienenstock EL, Cooper LN, Munro PW. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. The Journal of Neuroscience. 1982; 2(1): 32–48. pmid:7054394 doi: 10.1142/9789812795885_0006
|
[6] | Adelsberger-Mangan DM, Levy WB. Information maintenance and statistical dependence reduction in simple neural networks. Biological cybernetics. 1992; 67(5): 469–77. pmid:1391119 doi: 10.1007/bf00200991
|
[7] | Adelsberger-Mangan DM, Levy WB. Entropy-based evaluation of adaptively constructed neural networks. Annals of Biomedical Engineering. 1993; 21(6): 739–40. doi: 10.1007/bf02368659
|
[8] | Adelsberger-Mangan DM, Levy WB. Adaptive synaptogenesis constructs networks that maintain information and reduce statistical dependence. Biological cybernetics. 1993; 70(1): 81–7. pmid:8312400 doi: 10.1007/bf00202569
|
[9] | Adelsberger-Mangan DM, Levy WB. The influence of limited presynaptic growth and synapse removal on adaptive synaptogenesis. Biological cybernetics. 1994; 71(5): 461–8. pmid:7993933 doi: 10.1007/bf00198922
|
[10] | Adelsberger-Mangan DM, Levy WB. Adaptive synaptogenesis constructs networks which allocate network resources by category frequency. 1994 IEEE International Conference on Neural Networks, IEEE World Congress on Computational Intelligence. 1994; 4: 2245–9. doi: 10.1109/icnn.1994.374566
|
[11] | Colbert CM, Fall CP, Levy WB. Using adaptive synaptogenesis to model the development of ocular dominance in kitten visual cortex. In: Eeckman FH, editor. Computation in neurons and neural systems. Boston: Kluwer; 1994. p 139–44.
|
[12] | Shouval H, Intrator N, Cooper LN. BCM network develops orientation selectivity and ocular dominance in natural scene environment. Vision research. 1997; 37(23): 3339–42. pmid:9425548 doi: 10.1016/s0042-6989(97)00087-4
|
[13] | Ericsson KA, Prietula MJ, Cokely ET. The making of an expert. Harvard business review. 2007; 85(7/8): 114.
|
[14] | Levy WB, Deli? H, Adelsberger-Mangan DM. The statistical relationship between connectivity and neural activity in fractionally connected feed-forward networks. Biological cybernetics. 1999; 80(2): 131–9. pmid:10074691 doi: 10.1007/s004220050511
|
[15] | Levy WB. Contrasting rules for synaptogenesis, modification of existing synapses, and synaptic removal as a function of neuronal computation. Neurocomputing. 2004; 58: 343–50. doi: 10.1016/j.neucom.2004.01.065
|
[16] | Desmond NL, Levy WB. Changes in the postsynaptic density with long‐term potentiation in the dentate gyrus. Journal of Comparative Neurology. 1986; 253(4): 476–82. pmid:3025273 doi: 10.1002/cne.902530405
|
[17] | Levy WB, Baxter RA. Energy efficient neural codes. Neural Computation. 1996; 8(3): 531–43. pmid:8868566 doi: 10.1162/neco.1996.8.3.531
|
[18] | Gilson M, Burkitt AN, Grayden DB, Thomas DA, van Hemmen JL. Representation of input structure in synaptic weights by spike-timing-dependent plasticity. Physical Review E. 2010; 82(2): 021912. doi: 10.1103/physreve.82.021912
|
[19] | Barlow HB. Possible principles underlying the transformation of sensory messages. In: Rosenblith WA, editor. Sensory communication. Boston: MIT; 1961. p. 217–34.
|
[20] | Barlow HB. Single units and sensation: a neuron doctrine for perceptual psychology. Perception. 1972; 1(4): 371–94. pmid:4377168 doi: 10.1068/p010371
|
[21] | Felch AC, Granger RH. The hypergeometric connectivity hypothesis: Divergent performance of brain circuits with different synaptic connectivity distributions. Brain research. 2008; 1202: 3–13. pmid:17719016 doi: 10.1016/j.brainres.2007.06.044
|
[22] | Hogan JM, Diederich J. Recruitment learning of Boolean functions in sparse random networks. International journal of neural systems. 2001; 11(06): 537–59. doi: 10.1142/s0129065701000953
|
[23] | Wen Q, Chklovskii DB. A cost—benefit analysis of neuronal morphology. Journal of neurophysiology. 2008; 99(5): 2320–8. doi: 10.1152/jn.00280.2007. pmid:18305091
|
[24] | Battiti R. Using mutual information for selecting features in supervised neural net learning. IEEE Transactions on Neural Networks. 1994; 5(4): 537–50. pmid:18267827 doi: 10.1109/72.298224
|
[25] | Krupnik I, Müller-Wille L. Franz Boas and Inuktitut terminology for ice and snow: From the emergence of the field to the “Great Eskimo Vocabulary Hoax”. In: Krupnik I, Aporta C, Gearheard S, Laidler GJ, Holm LK, editors. SIKU: Knowing our ice. New York: Springer; 2010. p. 377–400.
|
[26] | Chase WG, Simon HA. Perception in chess. Cognitive psychology. 1973; 4(1): 55–81. doi: 10.1016/0010-0285(73)90004-2
|