全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Adaptive Synaptogenesis Constructs Neural Codes That Benefit Discrimination

DOI: 10.1371/journal.pcbi.1004299

Full-Text   Cite this paper   Add to My Lib

Abstract:

Intelligent organisms face a variety of tasks requiring the acquisition of expertise within a specific domain, including the ability to discriminate between a large number of similar patterns. From an energy-efficiency perspective, effective discrimination requires a prudent allocation of neural resources with more frequent patterns and their variants being represented with greater precision. In this work, we demonstrate a biologically plausible means of constructing a single-layer neural network that adaptively (i.e., without supervision) meets this criterion. Specifically, the adaptive algorithm includes synaptogenesis, synaptic shedding, and bi-directional synaptic weight modification to produce a network with outputs (i.e. neural codes) that represent input patterns proportional to the frequency of related patterns. In addition to pattern frequency, the correlational structure of the input environment also affects allocation of neural resources. The combined synaptic modification mechanisms provide an explanation of neuron allocation in the case of self-taught experts.

References

[1]  Levy WB, Desmond NL. The rules of elemental synaptic plasticity. In: Levy WB, Anderson JA, Lehmkule S, editors. Synaptic modification, neuron selectivity, and nervous system organization. Hillsdale, NJ: Erlbaum; 1985. p. 105–121.
[2]  Levy WB, Colbert CM, Desmond NL. Elemental adaptive processes of neurons and synapses: a statistical/computational perspective. In: Gluck MA, Rumelhart DE, editors. Neuroscience and Connectionist Theory. Hillsdale, NJ: Erlbaum; 1990. p. 187–235.
[3]  Dammasch IE, Wagner GP, Wolff JR. Self-stabilization of neuronal networks. Biological cybernetics. 1986; 54(4–5): 211–22. pmid:3017460 doi: 10.1007/bf00318417
[4]  Miller K. Equivalence of a sprouting-and-retraction model and correlation-based plasticity models of neural development. Neural Computation. 1998; 10(3): 529–47. pmid:9527832 doi: 10.1162/089976698300017647
[5]  Bienenstock EL, Cooper LN, Munro PW. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. The Journal of Neuroscience. 1982; 2(1): 32–48. pmid:7054394 doi: 10.1142/9789812795885_0006
[6]  Adelsberger-Mangan DM, Levy WB. Information maintenance and statistical dependence reduction in simple neural networks. Biological cybernetics. 1992; 67(5): 469–77. pmid:1391119 doi: 10.1007/bf00200991
[7]  Adelsberger-Mangan DM, Levy WB. Entropy-based evaluation of adaptively constructed neural networks. Annals of Biomedical Engineering. 1993; 21(6): 739–40. doi: 10.1007/bf02368659
[8]  Adelsberger-Mangan DM, Levy WB. Adaptive synaptogenesis constructs networks that maintain information and reduce statistical dependence. Biological cybernetics. 1993; 70(1): 81–7. pmid:8312400 doi: 10.1007/bf00202569
[9]  Adelsberger-Mangan DM, Levy WB. The influence of limited presynaptic growth and synapse removal on adaptive synaptogenesis. Biological cybernetics. 1994; 71(5): 461–8. pmid:7993933 doi: 10.1007/bf00198922
[10]  Adelsberger-Mangan DM, Levy WB. Adaptive synaptogenesis constructs networks which allocate network resources by category frequency. 1994 IEEE International Conference on Neural Networks, IEEE World Congress on Computational Intelligence. 1994; 4: 2245–9. doi: 10.1109/icnn.1994.374566
[11]  Colbert CM, Fall CP, Levy WB. Using adaptive synaptogenesis to model the development of ocular dominance in kitten visual cortex. In: Eeckman FH, editor. Computation in neurons and neural systems. Boston: Kluwer; 1994. p 139–44.
[12]  Shouval H, Intrator N, Cooper LN. BCM network develops orientation selectivity and ocular dominance in natural scene environment. Vision research. 1997; 37(23): 3339–42. pmid:9425548 doi: 10.1016/s0042-6989(97)00087-4
[13]  Ericsson KA, Prietula MJ, Cokely ET. The making of an expert. Harvard business review. 2007; 85(7/8): 114.
[14]  Levy WB, Deli? H, Adelsberger-Mangan DM. The statistical relationship between connectivity and neural activity in fractionally connected feed-forward networks. Biological cybernetics. 1999; 80(2): 131–9. pmid:10074691 doi: 10.1007/s004220050511
[15]  Levy WB. Contrasting rules for synaptogenesis, modification of existing synapses, and synaptic removal as a function of neuronal computation. Neurocomputing. 2004; 58: 343–50. doi: 10.1016/j.neucom.2004.01.065
[16]  Desmond NL, Levy WB. Changes in the postsynaptic density with long‐term potentiation in the dentate gyrus. Journal of Comparative Neurology. 1986; 253(4): 476–82. pmid:3025273 doi: 10.1002/cne.902530405
[17]  Levy WB, Baxter RA. Energy efficient neural codes. Neural Computation. 1996; 8(3): 531–43. pmid:8868566 doi: 10.1162/neco.1996.8.3.531
[18]  Gilson M, Burkitt AN, Grayden DB, Thomas DA, van Hemmen JL. Representation of input structure in synaptic weights by spike-timing-dependent plasticity. Physical Review E. 2010; 82(2): 021912. doi: 10.1103/physreve.82.021912
[19]  Barlow HB. Possible principles underlying the transformation of sensory messages. In: Rosenblith WA, editor. Sensory communication. Boston: MIT; 1961. p. 217–34.
[20]  Barlow HB. Single units and sensation: a neuron doctrine for perceptual psychology. Perception. 1972; 1(4): 371–94. pmid:4377168 doi: 10.1068/p010371
[21]  Felch AC, Granger RH. The hypergeometric connectivity hypothesis: Divergent performance of brain circuits with different synaptic connectivity distributions. Brain research. 2008; 1202: 3–13. pmid:17719016 doi: 10.1016/j.brainres.2007.06.044
[22]  Hogan JM, Diederich J. Recruitment learning of Boolean functions in sparse random networks. International journal of neural systems. 2001; 11(06): 537–59. doi: 10.1142/s0129065701000953
[23]  Wen Q, Chklovskii DB. A cost—benefit analysis of neuronal morphology. Journal of neurophysiology. 2008; 99(5): 2320–8. doi: 10.1152/jn.00280.2007. pmid:18305091
[24]  Battiti R. Using mutual information for selecting features in supervised neural net learning. IEEE Transactions on Neural Networks. 1994; 5(4): 537–50. pmid:18267827 doi: 10.1109/72.298224
[25]  Krupnik I, Müller-Wille L. Franz Boas and Inuktitut terminology for ice and snow: From the emergence of the field to the “Great Eskimo Vocabulary Hoax”. In: Krupnik I, Aporta C, Gearheard S, Laidler GJ, Holm LK, editors. SIKU: Knowing our ice. New York: Springer; 2010. p. 377–400.
[26]  Chase WG, Simon HA. Perception in chess. Cognitive psychology. 1973; 4(1): 55–81. doi: 10.1016/0010-0285(73)90004-2

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133