全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Influence of Pharmacological Preconditioning with Sevoflurane on Incidence of Early Allograft Dysfunction in Liver Transplant Recipients

DOI: 10.1155/2012/930487

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Pharmacological preconditioning is one of the tools used to diminish preservation injury. We investigated the influence of sevoflurane preconditioning of liver grafts on postoperative graft function. Methods. Consecutive 60 deceased brain donors were randomized into sevoflurane group or control group. In sevoflurane group donors were treated with endexpiratory 2,0 volume% of sevoflurane during procurement. Primary endpoint was postoperative liver injury. Secondary endpoint was incidence of early allograft dysfunction (EAD). Results. The groups were not different in median DRI, donor age, graft steatosis, and MELD score. Peak AST and ALT levels were lower in sevoflurane group than in control group: 792 and 1861 ( ) for AST and 606 and 1191 for ALT ( ). Incidence of EAD was 16,7% in sevoflurane group and 50% in control group (Fisher test, ). In subgroups without steatosis preconditioning with sevoflurane did not have influence on incidence of EAD. In subgroups with mild and moderate steatosis incidence of EAD was lower in recipients of liver grafts treated with sevoflurane. Conclusions. Preconditioning with sevoflurane during organ procurement improves graft function by lowering incidence of early allograft dysfunction, particularly in recipients of steatotic liver grafts. 1. Introduction In order to accommodate the growing list of patients awaiting liver transplantation, the transplant community has increased efforts to expand the donor pool by utilization of extended criteria donor organs [1, 2], which include organs distinguished by hepatic steatosis, old donor age, prolonged cold ischemia, or donation after cardiac death. These grafts are susceptible to preservation injury and as a consequence are prone to a higher incidence of early allograft dysfunction (EAD) [3]. Moreover, severe ischemia/reperfusion injury (IRI) significantly impacts transplantation outcome because it is a major risk factor for both early graft failure and late chronic allograft dysfunction. Pharmacological preconditioning is one of the tools used to diminish preservation injury. Although volatile anesthetics and propofol have been studied to attenuate injury in liver resections with inflow occlusion [4, 5], pharmacological preconditioning with sevoflurane of human liver grafts from deceased brain donors has not yet been described. The purpose of this study was to evaluate the influence of sevoflurane preconditioning of liver grafts from deceased brain donors on postoperative graft function in patients undergoing liver transplantation. 2. Materials and Methods Deceased

References

[1]  “HHS/HRSA/HSB/DOT OPTN / SRTR,” Annual Data Report, pp. 54–58, 2010.
[2]  N. R. Barshes, I. B. Horwitz, L. Franzini, J. M. Vierling, and J. A. Goss, “Waitlist mortality decreases with increased use of extended criteria donor liver grafts at adult liver transplant centers,” American Journal of Transplantation, vol. 7, no. 5, pp. 1265–1270, 2007.
[3]  B. Alkofer, B. Samstein, J. V. Guarrera et al., “Extended-donor criteria liver allografts,” Seminars in Liver Disease, vol. 26, no. 3, pp. 221–233, 2006.
[4]  B. Beck-Schimmer, S. Breitenstein, S. Urech et al., “A randomized controlled trial on pharmacological preconditioning in liver surgery using a volatile anesthetic,” Annals of Surgery, vol. 248, no. 6, pp. 909–916, 2008.
[5]  J. C. Song, Y. M. Sun, L. Q. Yang, M. Z. Zhang, Z. J. Lu, and W. F. Yu, “A comparison of liver function after hepatectomy with inflow occlusion between sevoflurane and propofol anesthesia,” Anesthesia and Analgesia, vol. 111, no. 4, pp. 1036–1041, 2010.
[6]  K. M. Olthoff, L. Kulik, B. Samstein et al., “Validation of a current definition of early allograft dysfunction in liver transplant recipients and analysis of risk factors,” Liver Transplantation, vol. 16, no. 8, pp. 943–949, 2010.
[7]  S. Feng, N. P. Goodrich, J. L. Bragg-Gresham et al., “Characteristics associated with liver graft failure: the concept of a donor risk index,” American Journal of Transplantation, vol. 6, no. 4, pp. 783–790, 2006.
[8]  J. J. Blok, A. E. Braat, R. Adam et al., “Validation of the donor risk index in orthotopic liver transplantation within the Eurotransplant region,” Liver Transplantation, vol. 18, no. 1, pp. 113–120, 2012.
[9]  K. Kotsch, F. Ulrich, A. Reutzel-Selke et al., “Methylprednisolone therapy in deceased donors reduces inflammation in the donor liver and improves outcome after liver transplantation a prospective randomized controlled trial,” Annals of Surgery, vol. 248, no. 6, pp. 1042–1049, 2008.
[10]  E. S. Baskin-Bey, K. Washburn, S. Feng et al., “Clinical trial of the pan-caspase inhibitor, IDN-6556, in human liver preservation injury,” American Journal of Transplantation, vol. 7, no. 1, pp. 218–225, 2007.
[11]  D. Bogetti, H. N. Sankary, T. M. Jarzembowski et al., “Thymoglobulin induction protects liver allografts from ischemia/reperfusion injury,” Clinical Transplantation, vol. 19, no. 4, pp. 507–511, 2005.
[12]  S. D. S. Peter, D. J. Post, M. I. Rodriguez-Davalos, D. D. Douglas, A. A. Moss, and D. C. Mulligan, “Tacrolimus as a liver flush solution to ameliorate the effects of ischemia/reperfusion injury following liver transplantation,” Liver Transplantation, vol. 9, no. 2, pp. 144–149, 2003.
[13]  J. D. Lang, X. Teng, P. Chumley et al., “Inhaled NO accelerates restoration of liver function in adults following orthotopic liver transplantation,” Journal of Clinical Investigation, vol. 117, no. 9, pp. 2583–2591, 2007.
[14]  R. W. Busuttil, G. S. Lipshutz, J. W. Kupiec-Weglinski et al., “RPSGL-Ig for improvement of early liver allograft function: a double-blind, placebo-controlled, single-center phase II study,” American Journal of Transplantation, vol. 11, no. 4, pp. 786–797, 2011.
[15]  M. Imai, S. Kon, and H. Inaba, “Effects of halothane, isoflurane and sevoflurane on ischemia-reperfusion injury in the perfused liver of fasted rats,” Acta Anaesthesiologica Scandinavica, vol. 40, no. 10, pp. 1242–1248, 1996.
[16]  H. Ishida, Y. Kadota, T. Sameshima, A. Nishiyama, T. Oda, and Y. Kanmura, “Comparison between sevoflurane and isoflurane anesthesia in pig hepatic ischemia-reperfusion injury,” Journal of Anesthesia, vol. 16, no. 1, pp. 44–50, 2002.
[17]  N. Bedirli, E. Ofluoglu, M. Kerem et al., “Hepatic energy metabolism and the differential protective effects of sevoflurane and isoflurane anesthesia in a rat hepatic ischemia-reperfusion injury model,” Anesthesia and Analgesia, vol. 106, no. 3, pp. 830–837, 2008.
[18]  J. S. Ko, M. S. Gwak, S. J. Choi et al., “The effects of desflurane and sevoflurane on hepatic and renal functions after right hepatectomy in living donors,” Transplant International, vol. 23, no. 7, pp. 736–744, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133