全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Wolbachia Utilize Host Actin for Efficient Maternal Transmission in Drosophila melanogaster

DOI: 10.1371/journal.ppat.1004798

Full-Text   Cite this paper   Add to My Lib

Abstract:

Wolbachia pipientis is a ubiquitous, maternally transmitted bacterium that infects the germline of insect hosts. Estimates are that Wolbachia infect nearly 40% of insect species on the planet, making it the most prevalent infection on Earth. The bacterium, infamous for the reproductive phenotypes it induces in arthropod hosts, has risen to recent prominence due to its use in vector control. Wolbachia infection prevents the colonization of vectors by RNA viruses, including Drosophila C virus and important human pathogens such as Dengue and Chikungunya. Here we present data indicating that Wolbachia utilize the host actin cytoskeleton during oogenesis for persistence within and transmission between Drosophila melanogaster generations. We show that phenotypically wild type flies heterozygous for cytoskeletal mutations in Drosophila profilin (chic221/+ and chic1320/+) or villin (qua6-396/+) either clear a Wolbachia infection, or result in significantly reduced infection levels. This reduction of Wolbachia is supported by PCR evidence, Western blot results and cytological examination. This phenotype is unlikely to be the result of maternal loading defects, defects in oocyte polarization, or germline stem cell proliferation, as the flies are phenotypically wild type in egg size, shape, and number. Importantly, however, heterozygous mutant flies exhibit decreased total G-actin in the ovary, compared to control flies and chic221 heterozygous mutants exhibit decreased expression of profilin. Additionally, RNAi knockdown of profilin during development decreases Wolbachia titers. We analyze evidence in support of alternative theories to explain this Wolbachia phenotype and conclude that our results support the hypothesis that Wolbachia utilize the actin skeleton for efficient transmission and maintenance within Drosophila.

References

[1]  Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6: 741–751. doi: 10.1038/nrmicro1969. pmid:18794912
[2]  Zug R, Hammerstein P (2012) Still a host of hosts for wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS One 7: e38544. doi: 10.1371/journal.pone.0038544. pmid:22685581
[3]  Hoerauf A, Specht S, Buttner M, Pfarr K, Mand S, et al. (2008) Wolbachia endobacteria depletion by doxycycline as antifilarial therapy has macrofilaricidal activity in onchocerciasis: a randomized placebo-controlled study. Medical Microbiology and Immunology 197: 295–311. pmid:17999080 doi: 10.1007/s00430-007-0062-1
[4]  Taylor MJ, Bandi C, Hoerauf AM, Lazdins J (2000) Wolbachia bacteria of filarial nematodes: A target for control? Parasitology Today 16: 179–180. pmid:10782070 doi: 10.1016/s0169-4758(00)01661-6
[5]  Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu GJ, Pyke AT, et al. (2009) A Wolbachia Symbiont in Aedes aegypti Limits Infection with Dengue, Chikungunya, and Plasmodium. Cell 139: 1268–1278. doi: 10.1016/j.cell.2009.11.042. pmid:20064373
[6]  Turley AP, Moreira LA, O'Neill SL, McGraw EA (2009) Wolbachia Infection Reduces Blood-Feeding Success in the Dengue Fever Mosquito, Aedes aegypti. Plos Neglected Tropical Diseases 3(9):e516. doi: 10.1371/journal.pntd.0000516. pmid:19753103
[7]  LePage D, Bordenstein SR (2013) Wolbachia: Can we save lives with a great pandemic? Trends Parasitol 29: 385–393. doi: 10.1016/j.pt.2013.06.003. pmid:23845310
[8]  Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, et al. (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139: 1268–1278. doi: 10.1016/j.cell.2009.11.042. pmid:20064373
[9]  Kittayapong P, Baisley KJ, Sharpe RG, Baimai V, O'Neill SL (2002) Maternal transmission efficiency of Wolbachia superinfections in Aedes albopictus populations in Thailand. Am J Trop Med Hyg 66: 103–107. pmid:12135258
[10]  Turelli M, Hoffmann AA (1995) Cytoplasmic incompatibility in Drosophila simulans: dynamics and parameter estimates from natural populations. Genetics 140: 1319–1338. pmid:7498773
[11]  McGraw EA, Merritt DJ, Droller JN, O'Neill SL (2002) Wolbachia density and virulence attenuation after transfer into a novel host. Proc Natl Acad Sci U S A 99: 2918–2923. pmid:11880639 doi: 10.1073/pnas.052466499
[12]  Weeks AR, Turelli M, Harcombe WR, Reynolds KT, Hoffmann AA (2007) From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila. PLoS Biol 5: e114. pmid:17439303 doi: 10.1371/journal.pbio.0050114
[13]  Perrot-Minnot MJ, Werren JH (1999) Wolbachia infection and incompatibility dynamics in experimental selection lines. Journal of Evolutionary Biology 12: 272–282. doi: 10.1046/j.1420-9101.1999.00025.x
[14]  Veneti Z, Clark ME, Karr TL, Savakis C, Bourtzis K (2004) Heads or tails: host-parasite interactions in the Drosophila-Wolbachia system. Appl Environ Microbiol 70: 5366–5372. pmid:15345422 doi: 10.1128/aem.70.9.5366-5372.2004
[15]  Ferree PM, Frydman HM, Li JM, Cao J, Wieschaus E, et al. (2005) Wolbachia utilizes host microtubules and Dynein for anterior localization in the Drosophila oocyte. PLoS Pathog 1: e14. pmid:16228015 doi: 10.1371/journal.ppat.0010014
[16]  Serbus LR, Sullivan W (2007) A cellular basis for Wolbachia recruitment to the host germline. PLoS Pathog 3: e190. pmid:18085821 doi: 10.1371/journal.ppat.0030190
[17]  Albertson R, Casper-Lindley C, Cao J, Tram U, Sullivan W (2009) Symmetric and asymmetric mitotic segregation patterns influence Wolbachia distribution in host somatic tissue. J Cell Sci 122: 4570–4583. doi: 10.1242/jcs.054981. pmid:19934219
[18]  Toomey ME, Panaram K, Fast EM, Beatty C, Frydman HM (2013) Evolutionarily conserved Wolbachia-encoded factors control pattern of stem-cell niche tropism in Drosophila ovaries and favor infection. Proc Natl Acad Sci U S A 110: 10788–10793. doi: 10.1073/pnas.1301524110. pmid:23744038
[19]  Landmann F, Bain O, Martin C, Uni S, Taylor MJ, et al. (2012) Both asymmetric mitotic segregation and cell-to-cell invasion are required for stable germline transmission of Wolbachia in filarial nematodes. Biol Open 1: 536–547. doi: 10.1242/bio.2012737. pmid:23213446
[20]  Melnikow E, Xu S, Liu J, Bell AJ, Ghedin E, et al. (2013) A potential role for the interaction of Wolbachia surface proteins with the Brugia malayi glycolytic enzymes and cytoskeleton in maintenance of endosymbiosis. PLoS Negl Trop Dis 7: e2151. doi: 10.1371/journal.pntd.0002151. pmid:23593519
[21]  Fischer K, Beatty WL, Weil GJ, Fischer PU (2014) High pressure freezing/freeze substitution fixation improves the ultrastructural assessment of Wolbachia endosymbiont—filarial nematode host interaction. PLoS One 9:e86383. doi: 10.1371/journal.pone.0086383. pmid:24466066
[22]  Verheyen EM, Cooley L (1994) Profilin Mutations Disrupt Multiple Actin-Dependent Processes during Drosophila Development. Development 120: 717–728. pmid:7600952
[23]  Cooley L, Verheyen E, Ayers K (1992) chickadee encodes a profilin required for intercellular cytoplasm transport during Drosophila oogenesis. Cell 69: 173–184. pmid:1339308 doi: 10.1016/0092-8674(92)90128-y
[24]  Bakken AH (1973) A cytological and genetic study of oogenesis in Drosophila melanogaster. Dev Biol 33: 100–122. pmid:4363796 doi: 10.1016/0012-1606(73)90167-x
[25]  Cook RK, Christensen SJ, Deal JA, Coburn RA, Deal ME, et al. (2012) The generation of chromosomal deletions to provide extensive coverage and subdivision of the Drosophila melanogaster genome. Genome Biol 13: R21. doi: 10.1186/gb-2012-13-3-r21. pmid:22445104
[26]  Fast EM, Toomey ME, Panaram K, Desjardins D, Kolaczyk ED, et al. (2011) Wolbachia enhance Drosophila stem cell proliferation and target the germline stem cell niche. Science 334: 990–992. doi: 10.1126/science.1209609. pmid:22021671
[27]  Ni JQ, Zhou R, Czech B, Liu LP, Holderbaum L, et al. (2011) A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nat Methods 8: 405–407. doi: 10.1038/nmeth.1592. pmid:21460824
[28]  Verheyen E, Cooley L (1994) Looking at Oogenesis. Methods in Cell Biology, Vol 44 44: 545–561. pmid:7707970 doi: 10.1016/s0091-679x(08)60931-0
[29]  Baldo L, Hotopp JCD, Jolley KA, Bordenstein SR, Biber SA, et al. (2006) Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Applied and Environmental Microbiology 72: 7098–7110. pmid:16936055 doi: 10.1128/aem.00731-06
[30]  Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29: e(45). doi: 10.1093/nar/29.9.e45
[31]  Frydman HM, Li JM, Robson DN, Wieschaus E (2006) Somatic stem cell niche tropism in Wolbachia. Nature 441: 509–512. pmid:16724067 doi: 10.1038/nature04756
[32]  Shields AR, Spence AC, Yamashita YM, Davies EL, Fuller MT (2014) The actin-binding protein profilin is required for germline stem cell maintenance and germ cell enclosure by somatic cyst cells. Development 141: 73–82. doi: 10.1242/dev.101931. pmid:24346697
[33]  Gonczy P, DiNardo S (1996) The germ line regulates somatic cyst cell proliferation and fate during Drosophila spermatogenesis. Development 122: 2437–2447. pmid:8756289
[34]  Genty LM, Bouchon D, Raimond M, Bertaux J (2014) Wolbachia infect ovaries in the course of their maturation: last minute passengers and priority travellers? PLoS One 9: e94577. doi: 10.1371/journal.pone.0094577. pmid:24722673
[35]  Robinson DN, Cooley L (1997) Genetic analysis of the actin cytoskeleton in the Drosophila ovary. Annual Review of Cell and Developmental Biology 13: 147–170. pmid:9442871 doi: 10.1146/annurev.cellbio.13.1.147
[36]  Castrillon DH, Gonczy P, Alexander S, Rawson R, Eberhart CG, et al. (1993) Toward a molecular genetic analysis of spermatogenesis in Drosophila melanogaster: characterization of male-sterile mutants generated by single P element mutagenesis. Genetics 135: 489–505. pmid:8244010
[37]  Matova N, Cooley L (1998) Quail, a Drosophila villin-like protein, bundles actin filaments in apoptotic nurse cells. Molecular Biology of the Cell 9: 18A–18A.
[38]  Matova N, Foley K, Cooley L (1998) Death and actin dynamics during Drosophila egg chamber development. Molecular Biology of the Cell 9: 382A–382A.
[39]  Mahajanmiklos S, Cooley L (1994) The Villin-Like Protein Encoded by the Drosophila Quail Gene Is Required for Actin Bundle Assembly during Oogenesis. Cell 78: 291–301. pmid:8044841 doi: 10.1016/0092-8674(94)90298-4
[40]  Matova N, Mahajan-Miklos S, Mooseker MS, Cooley L (1999) Drosophila Quail, a villin-related protein, bundles actin filaments in apoptotic nurse cells. Development 126: 5645–5657. pmid:10572041
[41]  Manseau L, Calley J, Phan H (1996) Profilin is required for posterior patterning of the Drosophila oocyte. Development 122: 2109–2116. pmid:8681792
[42]  Hadfield SJ, Axton JM (1999) Reproduction—Germ cells colonized by endosymbiotic bacteria. Nature 402: 482–482. pmid:10591206 doi: 10.1038/45002
[43]  Kose H, Karr TL (1995) Organization of Wolbachia-Pipientis in the Drosophila Fertilized Egg and Embryo Revealed by an Anti-Wolbachia Monoclonal-Antibody. Mechanisms of Development 51: 275–288. pmid:7547474 doi: 10.1016/0925-4773(95)00372-x
[44]  Miller WJ, Riegler M (2006) Evolutionary dynamics of wAu-Like Wolbachia variants in neotropical Drosophila spp. Applied and Environmental Microbiology 72: 826–835. pmid:16391124 doi: 10.1128/aem.72.1.826-835.2006
[45]  Turelli M, Hoffmann AA (1991) Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 353: 440–442. pmid:1896086 doi: 10.1038/353440a0
[46]  Hamm CA, Begun DJ, Vo A, Smith CC, Saelao P, et al. (2014) Wolbachia do not live by reproductive manipulation alone: infection polymorphism in Drosophila suzukii and D. subpulchrella. Mol Ecol. doi: 10.1111/mec.12901
[47]  Carrington LB, Lipkowitz JR, Hoffmann AA, Turelli M (2011) A re-examination of Wolbachia-induced cytoplasmic incompatibility in California Drosophila simulans. PLoS One 6: e22565. doi: 10.1371/journal.pone.0022565. pmid:21799900
[48]  Dobson SL, Bourtzis K, Braig HR, Jones BF, Zhou WG, et al. (1999) Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochemistry and Molecular Biology 29: 153–160. pmid:10196738 doi: 10.1016/s0965-1748(98)00119-2
[49]  Newton IL, Sheehan KB (2014) Passage of Wolbachia through mutant Drosophila melanogaster induces phenotypic and genomic changes. Appl Environ Microbiol. doi: 10.1128/aem.02987-14
[50]  Baum B, Perrimon N (2001) Spatial control of the actin cytoskeleton in Drosophila epithelial cells. Nat Cell Biol 3: 883–890. pmid:11584269 doi: 10.1038/ncb1001-883
[51]  Gouin E, Gantelet H, Egile C, Lasa I, Ohayon H, et al. (1999) A comparative study of the actin-based motilities of the pathogenic bacteria Listeria monocytogenes, Shigella flexneri and Rickettsia conorii. J Cell Sci 112 (Pt 11): 1697–1708. pmid:10318762

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133