Epithelial cells are a major port of entry for many viruses, but the molecular networks which protect barrier surfaces against viral infections are incompletely understood. Viral infections induce simultaneous production of type I (IFN-α/β) and type III (IFN-λ) interferons. All nucleated cells are believed to respond to IFN-α/β, whereas IFN-λ responses are largely confined to epithelial cells. We observed that intestinal epithelial cells, unlike hematopoietic cells of this organ, express only very low levels of functional IFN-α/β receptors. Accordingly, after oral infection of IFN-α/β receptor-deficient mice, human reovirus type 3 specifically infected cells in the lamina propria but, strikingly, did not productively replicate in gut epithelial cells. By contrast, reovirus replicated almost exclusively in gut epithelial cells of IFN-λ receptor-deficient mice, suggesting that the gut mucosa is equipped with a compartmentalized IFN system in which epithelial cells mainly respond to IFN-λ that they produce after viral infection, whereas other cells of the gut mostly rely on IFN-α/β for antiviral defense. In suckling mice with IFN-λ receptor deficiency, reovirus replicated in the gut epithelium and additionally infected epithelial cells lining the bile ducts, indicating that infants may use IFN-λ for the control of virus infections in various epithelia-rich tissues. Thus, IFN-λ should be regarded as an autonomous virus defense system of the gut mucosa and other epithelial barriers that may have evolved to avoid unnecessarily frequent triggering of the IFN-α/β system which would induce exacerbated inflammation.
References
[1]
Randall RE, Goodbourn S (2008) Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89: 1–47. pmid:18089727 doi: 10.1099/vir.0.83391-0
[2]
Haller O, Kochs G, Weber F (2006) The interferon response circuit: induction and suppression by pathogenic viruses. Virology 344: 119–130. pmid:16364743 doi: 10.1016/j.virol.2005.09.024
[3]
van den Broek MF, Muller U, Huang S, Zinkernagel RM, Aguet M (1995) Immune defence in mice lacking type I and/or type II interferon receptors. Immunol Rev 148: 5–18. pmid:8825279 doi: 10.1111/j.1600-065x.1995.tb00090.x
[4]
Muller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J, et al. (1994) Functional role of type I and type II interferons in antiviral defense. Science 264: 1918–1921. pmid:8009221 doi: 10.1126/science.8009221
[5]
Krause CD, Pestka S (2005) Evolution of the Class 2 cytokines and receptors, and discovery of new friends and relatives. Pharmacol Ther 106: 299–346. pmid:15922016 doi: 10.1016/j.pharmthera.2004.12.002
[6]
Theofilopoulos AN, Baccala R, Beutler B, Kono DH (2005) Type I interferons (alpha/beta) in immunity and autoimmunity. Annu Rev Immunol 23: 307–336. pmid:15771573 doi: 10.1146/annurev.immunol.23.021704.115843
[7]
Schindler C, Levy DE, Decker T (2007) JAK-STAT signaling: from interferons to cytokines. J Biol Chem 282: 20059–20063. pmid:17502367 doi: 10.1074/jbc.r700016200
[8]
Stark GR, Darnell JE Jr. (2012) The JAK-STAT pathway at twenty. Immunity 36: 503–514. doi: 10.1016/j.immuni.2012.03.013. pmid:22520844
Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, et al. (2011) A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472: 481–485. doi: 10.1038/nature09907. pmid:21478870
[11]
Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, et al. (2003) IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 4: 69–77. pmid:12483210 doi: 10.1038/ni875
[12]
Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeyer S, et al. (2003) IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 4: 63–68. pmid:12469119 doi: 10.1038/ni873
[13]
Sommereyns C, Paul S, Staeheli P, Michiels T (2008) IFN-lambda (IFN-lambda) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. PLoS Pathog 4: e1000017. doi: 10.1371/journal.ppat.1000017. pmid:18369468
[14]
Mordstein M, Neugebauer E, Ditt V, Jessen B, Rieger T, et al. (2010) Lambda interferon renders epithelial cells of the respiratory and gastrointestinal tracts resistant to viral infections. J Virol 84: 5670–5677. doi: 10.1128/JVI.00272-10. pmid:20335250
[15]
Mordstein M, Michiels T, Staeheli P (2010) What have we learned from the IL28 receptor knockout mouse? J Interferon Cytokine Res 30: 579–584. doi: 10.1089/jir.2010.0061. pmid:20649452
[16]
Mordstein M, Kochs G, Dumoutier L, Renauld JC, Paludan SR, et al. (2008) Interferon-lambda contributes to innate immunity of mice against influenza A virus but not against hepatotropic viruses. PLoS Pathog 4: e1000151. doi: 10.1371/journal.ppat.1000151. pmid:18787692
[17]
Johansson C, Wetzel JD, He J, Mikacenic C, Dermody TS, et al. (2007) Type I interferons produced by hematopoietic cells protect mice against lethal infection by mammalian reovirus. J Exp Med 204: 1349–1358. pmid:17502662 doi: 10.1084/jem.20061587
[18]
Angel J, Franco MA, Greenberg HB, Bass D (1999) Lack of a role for type I and type II interferons in the resolution of rotavirus-induced diarrhea and infection in mice. J Interferon Cytokine Res 19: 655–659. pmid:10433367 doi: 10.1089/107999099313802
[19]
Holloway G, Coulson BS (2013) Innate cellular responses to rotavirus infection. J Gen Virol 94: 1151–1160. doi: 10.1099/vir.0.051276-0. pmid:23486667
[20]
Teijaro JR, Ng C, Lee AM, Sullivan BM, Sheehan KC, et al. (2013) Persistent LCMV infection is controlled by blockade of type I interferon signaling. Science 340: 207–211. doi: 10.1126/science.1235214. pmid:23580529
[21]
Feng N, Kim B, Fenaux M, Nguyen H, Vo P, et al. (2008) Role of interferon in homologous and heterologous rotavirus infection in the intestines and extraintestinal organs of suckling mice. J Virol 82: 7578–7590. doi: 10.1128/JVI.00391-08. pmid:18495762
[22]
Ohka S, Igarashi H, Nagata N, Sakai M, Koike S, et al. (2007) Establishment of a poliovirus oral infection system in human poliovirus receptor-expressing transgenic mice that are deficient in alpha/beta interferon receptor. J Virol 81: 7902–7912. pmid:17507470 doi: 10.1128/jvi.02675-06
[23]
Pott J, Mahlakoiv T, Mordstein M, Duerr CU, Michiels T, et al. (2011) IFN-lambda determines the intestinal epithelial antiviral host defense. Proc Natl Acad Sci U S A 108: 7944–7949. doi: 10.1073/pnas.1100552108. pmid:21518880
[24]
Taniguchi T, Takaoka A (2001) A weak signal for strong responses: interferon-alpha/beta revisited. Nat Rev Mol Cell Biol 2: 378–386. pmid:11331912 doi: 10.1038/35073080
[25]
Ganal SC, Sanos SL, Kallfass C, Oberle K, Johner C, et al. (2012) Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 37: 171–186. doi: 10.1016/j.immuni.2012.05.020. pmid:22749822
[26]
Abt MC, Osborne LC, Monticelli LA, Doering TA, Alenghat T, et al. (2012) Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity 37: 158–170. doi: 10.1016/j.immuni.2012.04.011. pmid:22705104
[27]
Crotta S, Davidson S, Mahlakoiv T, Desmet CJ, Buckwalter MR, et al. (2013) Type I and type III interferons drive redundant amplification loops to induce a transcriptional signature in influenza-infected airway epithelia. PLoS Pathog 9: e1003773. doi: 10.1371/journal.ppat.1003773. pmid:24278020
[28]
Sen A, Rothenberg ME, Mukherjee G, Feng N, Kalisky T, et al. (2012) Innate immune response to homologous rotavirus infection in the small intestinal villous epithelium at single-cell resolution. Proc Natl Acad Sci U S A 109: 20667–20672. doi: 10.1073/pnas.1212188109. pmid:23188796
[29]
Kawai T, Akira S (2006) Innate immune recognition of viral infection. Nat Immunol 7: 131–137. pmid:16424890 doi: 10.1038/ni1303
[30]
Colonna M, Krug A, Cella M (2002) Interferon-producing cells: on the front line in immune responses against pathogens. Curr Opin Immunol 14: 373–379. pmid:11973137 doi: 10.1016/s0952-7915(02)00349-7
[31]
Fulton JR, Cuff CF (2004) Mucosal and systemic immunity to intestinal reovirus infection in aged mice. Exp Gerontol 39: 1285–1294. pmid:15489051 doi: 10.1016/j.exger.2004.06.013
[32]
Chen D, Rubin DH (2001) Mucosal T cell response to reovirus. Immunol Res 23: 229–234. pmid:11444387 doi: 10.1385/ir:23:2-3:229
[33]
Major AS, Rubin DH, Cuff CF (1998) Mucosal immunity to reovirus infection. Curr Top Microbiol Immunol 233: 163–177. pmid:9599937 doi: 10.1007/978-3-642-72095-6_9
[34]
Dionne KR, Galvin JM, Schittone SA, Clarke P, Tyler KL (2011) Type I interferon signaling limits reoviral tropism within the brain and prevents lethal systemic infection. J Neurovirol 17: 314–326. doi: 10.1007/s13365-011-0038-1. pmid:21671121
[35]
Rubin DH, Eaton MA, Anderson AO (1986) Reovirus infection in adult mice: the virus hemagglutinin determines the site of intestinal disease. Microb Pathog 1: 79–87. pmid:2854595 doi: 10.1016/0882-4010(86)90034-3
[36]
Amerongen HM, Wilson GA, Fields BN, Neutra MR (1994) Proteolytic processing of reovirus is required for adherence to intestinal M cells. J Virol 68: 8428–8432. pmid:7525989
[37]
Pott J, Stockinger S, Torow N, Smoczek A, Lindner C, et al. (2012) Age-dependent TLR3 expression of the intestinal epithelium contributes to rotavirus susceptibility. PLoS Pathog 8: e1002670. doi: 10.1371/journal.ppat.1002670. pmid:22570612
[38]
Arnold MM, Sen A, Greenberg HB, Patton JT (2013) The battle between rotavirus and its host for control of the interferon signaling pathway. PLoS Pathog 9: e1003064. doi: 10.1371/journal.ppat.1003064. pmid:23359266
[39]
Mann MA, Knipe DM, Fischbach GD, Fields BN (2002) Type 3 reovirus neuroinvasion after intramuscular inoculation: direct invasion of nerve terminals and age-dependent pathogenesis. Virology 303: 222–231. pmid:12490385 doi: 10.1006/viro.2002.1699
[40]
Barton ES, Youree BE, Ebert DH, Forrest JC, Connolly JL, et al. (2003) Utilization of sialic acid as a coreceptor is required for reovirus-induced biliary disease. J Clin Invest 111: 1823–1833. pmid:12813018 doi: 10.1172/jci16303
[41]
Derrien M, Hooper JW, Fields BN (2003) The M2 gene segment is involved in the capacity of reovirus type 3Abney to induce the oily fur syndrome in neonatal mice, a S1 gene segment-associated phenotype. Virology 305: 25–30. pmid:12504537 doi: 10.1006/viro.2002.1723
[42]
Wilson GA, Morrison LA, Fields BN (1994) Association of the reovirus S1 gene with serotype 3-induced biliary atresia in mice. J Virol 68: 6458–6465. pmid:8083983
[43]
Tyler KL, Leser JS, Phang TL, Clarke P (2010) Gene expression in the brain during reovirus encephalitis. J Neurovirol 16: 56–71. doi: 10.3109/13550280903586394. pmid:20158406
[44]
Hermant P, Michiels T (2014) Interferon-lambda in the context of viral infections: production, response and therapeutic implications. J Innate Immun 6: 563–574. doi: 10.1159/000360084. pmid:24751921
[45]
Nice TJ, Baldridge MT, McCune BT, Norman JM, Lazear HM, et al. (2014) Interferon lambda cures persistent murine norovirus infection in the absence of adaptive immunity. Science.
[46]
Coccia EM, Severa M, Giacomini E, Monneron D, Remoli ME, et al. (2004) Viral infection and Toll-like receptor agonists induce a differential expression of type I and lambda interferons in human plasmacytoid and monocyte-derived dendritic cells. Eur J Immunol 34: 796–805. pmid:14991609 doi: 10.1002/eji.200324610
[47]
Ank N, Iversen MB, Bartholdy C, Staeheli P, Hartmann R, et al. (2008) An important role for type III interferon (IFN-lambda/IL-28) in TLR-induced antiviral activity. J Immunol 180: 2474–2485. pmid:18250457 doi: 10.4049/jimmunol.180.4.2474
[48]
Ioannidis I, Ye F, McNally B, Willette M, Flano E (2013) Toll-like receptor expression and induction of type I and type III interferons in primary airway epithelial cells. J Virol 87: 3261–3270. doi: 10.1128/JVI.01956-12. pmid:23302870
[49]
Wang J, Oberley-Deegan R, Wang S, Nikrad M, Funk CJ, et al. (2009) Differentiated human alveolar type II cells secrete antiviral IL-29 (IFN-lambda 1) in response to influenza A infection. J Immunol 182: 1296–1304. pmid:19155475 doi: 10.4049/jimmunol.182.3.1296
[50]
Jewell NA, Cline T, Mertz SE, Smirnov SV, Flano E, et al. (2010) Lambda interferon is the predominant interferon induced by influenza A virus infection in vivo. J Virol 84: 11515–11522. doi: 10.1128/JVI.01703-09. pmid:20739515
[51]
Khaitov MR, Laza-Stanca V, Edwards MR, Walton RP, Rohde G, et al. (2009) Respiratory virus induction of alpha-, beta- and lambda-interferons in bronchial epithelial cells and peripheral blood mononuclear cells. Allergy 64: 375–386. doi: 10.1111/j.1398-9995.2008.01826.x. pmid:19175599
[52]
Okabayashi T, Kojima T, Masaki T, Yokota S, Imaizumi T, et al. (2011) Type-III interferon, not type-I, is the predominant interferon induced by respiratory viruses in nasal epithelial cells. Virus Res 160: 360–366. doi: 10.1016/j.virusres.2011.07.011. pmid:21816185
[53]
Zahn S, Rehkamper C, Kummerer BM, Ferring-Schmidt S, Bieber T, et al. (2011) Evidence for a pathophysiological role of keratinocyte-derived type III interferon (IFNlambda) in cutaneous lupus erythematosus. J Invest Dermatol 131: 133–140. doi: 10.1038/jid.2010.244. pmid:20720564
[54]
Marukian S, Andrus L, Sheahan TP, Jones CT, Charles ED, et al. (2011) Hepatitis C virus induces interferon-lambda and interferon-stimulated genes in primary liver cultures. Hepatology 54: 1913–1923. doi: 10.1002/hep.24580. pmid:21800339
[55]
Thomas E, Gonzalez VD, Li Q, Modi AA, Chen W, et al. (2012) HCV infection induces a unique hepatic innate immune response associated with robust production of type III interferons. Gastroenterology 142: 978–988. doi: 10.1053/j.gastro.2011.12.055. pmid:22248663
[56]
Onoguchi K, Yoneyama M, Takemura A, Akira S, Taniguchi T, et al. (2007) Viral infections activate types I and III interferon genes through a common mechanism. J Biol Chem 282: 7576–7581. pmid:17204473 doi: 10.1074/jbc.m608618200
[57]
Odendall C, Dixit E, Stavru F, Bierne H, Franz KM, et al. (2014) Diverse intracellular pathogens activate type III interferon expression from peroxisomes. Nat Immunol 15: 717–726. doi: 10.1038/ni.2915. pmid:24952503
[58]
de Carvalho E, Ivantes CA, Bezerra JA (2007) Extrahepatic biliary atresia: current concepts and future directions. J Pediatr (Rio J) 83: 105–120. pmid:17426869 doi: 10.2223/jped.1608
[59]
Morecki R, Glaser JH, Cho S, Balistreri WF, Horwitz MS (1982) Biliary atresia and reovirus type 3 infection. N Engl J Med 307: 481–484. pmid:6285193 doi: 10.1056/nejm198208193070806
[60]
Tyler KL, Sokol RJ, Oberhaus SM, Le M, Karrer FM, et al. (1998) Detection of reovirus RNA in hepatobiliary tissues from patients with extrahepatic biliary atresia and choledochal cysts. Hepatology 27: 1475–1482. pmid:9620316 doi: 10.1002/hep.510270603
[61]
Phillips PA, Keast D, Papadimitriou JM, Walters MN, Stanley NF (1969) Chronic obstructive jaundice induced by Reovirus type 3 in weanling mice. Pathology 1: 193–203. pmid:4330558 doi: 10.3109/00313026909071296
[62]
Riepenhoff-Talty M, Schaekel K, Clark HF, Mueller W, Uhnoo I, et al. (1993) Group A rotaviruses produce extrahepatic biliary obstruction in orally inoculated newborn mice. Pediatr Res 33: 394–399. pmid:8386833 doi: 10.1203/00006450-199333040-00016
[63]
Trinchieri G (2010) Type I interferon: friend or foe? J Exp Med 207: 2053–2063. doi: 10.1084/jem.20101664. pmid:20837696
[64]
Davidson S, Crotta S, McCabe TM, Wack A (2014) Pathogenic potential of interferon alphabeta in acute influenza infection. Nat Commun 5: 3864. doi: 10.1038/ncomms4864. pmid:24844667
[65]
Boasso A, Hardy AW, Anderson SA, Dolan MJ, Shearer GM (2008) HIV-induced type I interferon and tryptophan catabolism drive T cell dysfunction despite phenotypic activation. PLoS One 3: e2961. doi: 10.1371/journal.pone.0002961. pmid:18698365
[66]
Makowska Z, Duong FH, Trincucci G, Tough DF, Heim MH (2011) Interferon-beta and interferon-lambda signaling is not affected by interferon-induced refractoriness to interferon-alpha in vivo. Hepatology 53: 1154–1163. doi: 10.1002/hep.24189. pmid:21480323
[67]
Horisberger MA, de Staritzky K (1987) A recombinant human interferon-alpha B/D hybrid with a broad host-range. J Gen Virol 68 (Pt 3): 945–948. doi: 10.1099/0022-1317-68-3-945
[68]
Flohr F, Schneider-Schaulies S, Haller O, Kochs G (1999) The central interactive region of human MxA GTPase is involved in GTPase activation and interaction with viral target structures. FEBS Lett 463: 24–28. pmid:10601631 doi: 10.1016/s0014-5793(99)01598-7
[69]
Sanos SL, Diefenbach A (2010) Isolation of NK cells and NK-like cells from the intestinal lamina propria. Methods Mol Biol 612: 505–517. doi: 10.1007/978-1-60761-362-6_32. pmid:20033661