The mechanism by which immunity to Herpes Simplex Virus (HSV) is initiated is not completely defined. HSV initially infects mucosal epidermis prior to entering nerve endings. In mice, epidermal Langerhans cells (LCs) are the first dendritic cells (DCs) to encounter HSV, but it is CD103+ dermal DCs that carry viral antigen to lymph nodes for antigen presentation, suggesting DC cross-talk in skin. In this study, we compared topically HSV-1 infected human foreskin explants with biopsies of initial human genital herpes lesions to show LCs are initially infected then emigrate into the dermis. Here, LCs bearing markers of maturation and apoptosis formed large cell clusters with BDCA3+ dermal DCs (thought to be equivalent to murine CD103+ dermal DCs) and DC-SIGN+ DCs/macrophages. HSV-expressing LC fragments were observed inside the dermal DCs/macrophages and the BDCA3+ dermal DCs had up-regulated a damaged cell uptake receptor CLEC9A. No other infected epidermal cells interacted with dermal DCs. Correspondingly, LCs isolated from human skin and infected with HSV-1 in vitro also underwent apoptosis and were taken up by similarly isolated BDCA3+ dermal DCs and DC-SIGN+ cells. Thus, we conclude a viral antigen relay takes place where HSV infected LCs undergo apoptosis and are taken up by dermal DCs for subsequent antigen presentation. This provides a rationale for targeting these cells with mucosal or perhaps intradermal HSV immunization.
References
[1]
Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52. pmid:9521319 doi: 10.1038/32588
[2]
Cunningham AL, Diefenbach RJ, Miranda-Saksena M, Bosnjak L, Kim M, Jones C, et al. The cycle of human herpes simplex virus infection: virus transport and immune control. J Infect Dis. 2006;194 Suppl 1:S11–8. pmid:16921466 doi: 10.1086/505359
[3]
Su SJ, Wu HH, Lin YH, Lin HY. Comparative studies of types 1 and 2 herpes simplex virus infection of cultured normal keratinocytes. J Clin Pathol. 1995;48(1):75–9. pmid:7706526 doi: 10.1136/jcp.48.1.75
[4]
Yoshida Y, Li Z, Kurokawa M, Kawana T, Imakita M, Shiraki K. Growth of herpes simplex virus in epidermal keratinocytes determines cutaneous pathogenicity in mice. J Med Virol. 2005;75(3):421–6. pmid:15648069 doi: 10.1002/jmv.20284
[5]
Puttur FK, Fernandez MA, White R, Roediger B, Cunningham AL, Weninger W, et al. Herpes simplex virus infects skin gamma delta T cells before Langerhans cells and impedes migration of infected Langerhans cells by inducing apoptosis and blocking E-cadherin downregulation. J Immunol. 2010;185(1):477–87. doi: 10.4049/jimmunol.0904106. pmid:20519652
[6]
Koelle DM, Corey L. Recent progress in herpes simplex virus immunobiology and vaccine research. Clin Microbiol Rev. 2003;16(1):96–113. pmid:12525427 doi: 10.1128/cmr.16.1.96-113.2003
[7]
Ashley R, Mertz GJ, Corey L. Detection of asymptomatic herpes simplex virus infections after vaccination. J Virol. 1987;61(2):264–8. pmid:3806788
[8]
Reeves WC, Corey L, Adams HG, Vontver LA, Holmes KK. Risk of recurrence after first episodes of genital herpes. Relation to HSV type and antibody response. N Engl J Med. 1981;305(6):315–9. pmid:6264300 doi: 10.1056/nejm198108063050604
[9]
Harrison CJ, Miller RL, Bernstein DI. Posttherapy suppression of genital herpes simplex virus (HSV) recurrences and enhancement of HSV-specific T-cell memory by imiquimod in guinea pigs. Antimicrob Agents Chemother. 1994;38(9):2059–64. pmid:7811019 doi: 10.1128/aac.38.9.2059
[10]
Manickan E, Rouse BT. Roles of different T-cell subsets in control of herpes simplex virus infection determined by using T-cell-deficient mouse-models. J Virol. 1995;69(12):8178–9. pmid:7494346
[11]
Cunningham AL, Turner RR, Miller AC, Para MF, Merigan TC. Evolution of recurrent herpes simplex lesions. An immunohistologic study. J Clin Invest. 1985;75(1):226–33. pmid:3880773 doi: 10.1172/jci111678
[12]
Koelle DM, Liu Z, McClurkan CM, Topp MS, Riddell SR, Pamer EG, et al. Expression of cutaneous lymphocyte-associated antigen by CD8(+) T cells specific for a skin-tropic virus. J Clin Invest. 2002;110(4):537–48. pmid:12189248 doi: 10.1172/jci15537
[13]
Gebhardt T, Whitney PG, Zaid A, Mackay LK, Brooks AG, Heath WR, et al. Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature. 2011;477(7363):216–9. doi: 10.1038/nature10339. pmid:21841802
[14]
Zhu J, Koelle DM, Cao J, Vazquez J, Huang ML, Hladik F, et al. Virus-specific CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. J Exp Med. 2007;204(3):595–603. pmid:17325200 doi: 10.1084/jem.20061792
[15]
Sprecher E, Becker Y. Skin Langerhans cells play an essential role in the defense against HSV-1 infection. Arch Virol. 1986;91(3–4):341–9. pmid:3778212 doi: 10.1007/bf01314292
[16]
Zhao X, Deak E, Soderberg K, Linehan M, Spezzano D, Zhu J, et al. Vaginal submucosal dendritic cells, but not Langerhans cells, induce protective Th1 responses to herpes simplex virus-2. J Exp Med. 2003;197(2):153–62. pmid:12538655 doi: 10.1084/jem.20021109
[17]
Bachem A, Guttler S, Hartung E, Ebstein F, Schaefer M, Tannert A, et al. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J Exp Med. 2010;207(6):1273–81. doi: 10.1084/jem.20100348. pmid:20479115
[18]
Bedoui S, Whitney PG, Waithman J, Eidsmo L, Wakim L, Caminschi I, et al. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat Immunol. 2009;10(5):488–95. doi: 10.1038/ni.1724. pmid:19349986
[19]
Allan RS, Smith CM, Belz GT, van Lint AL, Wakim LM, Heath WR, et al. Epidermal viral immunity induced by CD8alpha+ dendritic cells but not by Langerhans cells. Science. 2003;301(5641):1925–8. pmid:14512632 doi: 10.1126/science.1087576
[20]
Poulin LF, Salio M, Griessinger E, Anjos-Afonso F, Craciun L, Chen JL, et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells. J Exp Med. 2010;207(6):1261–71. doi: 10.1084/jem.20092618. pmid:20479117
[21]
Haniffa M, Shin A, Bigley V, McGovern N, Teo P, See P, et al. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity. 2012;37(1):60–73. doi: 10.1016/j.immuni.2012.04.012. pmid:22795876
[22]
Schlitzer A, Ginhoux F. Organization of the mouse and human DC network. Curr Opin Immunol. 2014;26:90–9. doi: 10.1016/j.coi.2013.11.002. pmid:24556405
[23]
Edelson BT, Kc W, Juang R, Kohyama M, Benoit LA, Klekotka PA, et al. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8alpha+ conventional dendritic cells. J Exp Med. 2010;207(4):823–36. doi: 10.1084/jem.20091627. pmid:20351058
[24]
Ginhoux F, Liu K, Helft J, Bogunovic M, Greter M, Hashimoto D, et al. The origin and development of nonlymphoid tissue CD103+ DCs. J Exp Med. 2009;206(13):3115–30. doi: 10.1084/jem.20091756. pmid:20008528
[25]
Segura E, Durand M, Amigorena S. Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ-resident dendritic cells. J Exp Med. 2013;210(5):1035–47. doi: 10.1084/jem.20121103. pmid:23569327
[26]
Engering A, Geijtenbeek TB, van Vliet SJ, Wijers M, van Liempt E, Demaurex N, et al. The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J Immunol. 2002;168(5):2118–26. pmid:11859097 doi: 10.4049/jimmunol.168.5.2118
[27]
McGovern N, Schlitzer A, Gunawan M, Jardine L, Shin A, Poyner E, et al. Human Dermal CD14(+) Cells Are a Transient Population of Monocyte-Derived Macrophages. Immunity. 2014;41(3):465–77. doi: 10.1016/j.immuni.2014.08.006. pmid:25200712
[28]
Saksena MM, Wakisaka H, Tijono B, Boadle RA, Rixon F, Takahashi H, et al. Herpes simplex virus type 1 accumulation, envelopment, and exit in growth cones and varicosities in mid-distal regions of axons. J Virol. 2006;80(7):3592–606. pmid:16537627 doi: 10.1128/jvi.80.7.3592-3606.2006
[29]
Kim M, Osborne NR, Zeng W, Donaghy H, McKinnon K, Jackson DC, et al. Herpes simplex virus antigens directly activate NK cells via TLR2, thus facilitating their presentation to CD4 T lymphocytes. J Immunol. 2012;188(9):4158–70. doi: 10.4049/jimmunol.1103450. pmid:22467654
[30]
Nasr N, Lai J, Botting RA, Mercier SK, Harman AN, Kim M, et al. Inhibition of Two Temporal Phases of HIV-1 Transfer from Primary Langerhans Cells to T Cells: The Role of Langerin. J Immunol. 2014;193(5):2554–64. doi: 10.4049/jimmunol.1400630. pmid:25070850
[31]
Fontaine-Rodriguez EC, Knipe DM. Herpes simplex virus ICP27 increases translation of a subset of viral late mRNAs. J Virol. 2008;82(7):3538–45. doi: 10.1128/JVI.02395-07. pmid:18216091
Tokumaru S, Sayama K, Shirakata Y, Komatsuzawa H, Ouhara K, Hanakawa Y, et al. Induction of keratinocyte migration via transactivation of the epidermal growth factor receptor by the antimicrobial peptide LL-37. J Immunol. 2005;175(7):4662–8. pmid:16177113 doi: 10.4049/jimmunol.175.7.4662
[34]
Eidsmo L, Allan R, Caminschi I, van Rooijen N, Heath WR, Carbone FR. Differential migration of epidermal and dermal dendritic cells during skin infection. J Immunol. 2009;182(5):3165–72. doi: 10.4049/jimmunol.0802950. pmid:19234214
[35]
Bosnjak L, Miranda-Saksena M, Koelle DM, Boadle RA, Jones CA, Cunningham AL. Herpes simplex virus infection of human dendritic cells induces apoptosis and allows cross-presentation via uninfected dendritic cells. J Immunol. 2005;174(4):2220–7. pmid:15699155 doi: 10.4049/jimmunol.174.4.2220
[36]
Peng Y, Martin DA, Kenkel J, Zhang K, Ogden CA, Elkon KB. Innate and adaptive immune response to apoptotic cells. J Autoimmun. 2007;29(4):303–9. pmid:17888627 doi: 10.1016/j.jaut.2007.07.017
[37]
Huysamen C, Willment JA, Dennehy KM, Brown GD. CLEC9A is a novel activation C-type lectin-like receptor expressed on BDCA3+ dendritic cells and a subset of monocytes. J Biol Chem. 2008;283(24):16693–701. doi: 10.1074/jbc.M709923200. pmid:18408006
[38]
Caminschi I, Proietto AI, Ahmet F, Kitsoulis S, Shin Teh J, Lo JC, et al. The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood. 2008;112(8):3264–73. doi: 10.1182/blood-2008-05-155176. pmid:18669894
[39]
Zhang JG, Czabotar PE, Policheni AN, Caminschi I, Wan SS, Kitsoulis S, et al. The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity. 2012;36(4):646–57. doi: 10.1016/j.immuni.2012.03.009. pmid:22483802
[40]
Harman AN, Bye CR, Nasr N, Sandgren KJ, Kim M, Mercier SK, et al. Identification of lineage relationships and novel markers of blood and skin human dendritic cells. J Immunol. 2013;190(1):66–79. doi: 10.4049/jimmunol.1200779. pmid:23183897