[1] | Bogaert D, De Groot R, Hermans PW (2004) Streptococcus pneumoniae colonisation: the key to pneumococcal disease. The Lancet Infectious diseases 4: 144–154. pmid:14998500 doi: 10.1016/s1473-3099(04)00938-7
|
[2] | Campbell GD Jr., Silberman R (1998) Drug-resistant Streptococcus pneumoniae. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America 26: 1188–1195. doi: 10.1086/520286
|
[3] | Walker CL, Rudan I, Liu L, Nair H, Theodoratou E, et al. (2013) Global burden of childhood pneumonia and diarrhoea. Lancet 381: 1405–1416. doi: 10.1016/S0140-6736(13)60222-6. pmid:23582727
|
[4] | Hiller NL, Ahmed A, Powell E, Martin DP, Eutsey R, et al. (2010) Generation of genic diversity among Streptococcus pneumoniae strains via horizontal gene transfer during a chronic polyclonal pediatric infection. PLoS pathogens 6: e1001108. doi: 10.1371/journal.ppat.1001108. pmid:20862314
|
[5] | Johnston C, Martin B, Fichant G, Polard P, Claverys JP (2014) Bacterial transformation: distribution, shared mechanisms and divergent control. Nature reviews Microbiology 12: 181–196. doi: 10.1038/nrmicro3199. pmid:24509783
|
[6] | Chen I, Dubnau D (2004) DNA uptake during bacterial transformation. Nature reviews Microbiology 2: 241–249. pmid:15083159 doi: 10.1038/nrmicro844
|
[7] | Johnston C, Campo N, Berge MJ, Polard P, Claverys JP (2014) Streptococcus pneumoniae, le transformiste. Trends in microbiology 22: 113–119. doi: 10.1016/j.tim.2014.01.002. pmid:24508048
|
[8] | Balaban M, Battig P, Muschiol S, Tirier SM, Wartha F, et al. (2014) Secretion of a pneumococcal type II secretion system pilus correlates with DNA uptake during transformation. Proceedings of the National Academy of Sciences of the United States of America 111: E758–765. doi: 10.1073/pnas.1313860111. pmid:24550320
|
[9] | Chen I, Provvedi R, Dubnau D (2006) A macromolecular complex formed by a pilin-like protein in competent Bacillus subtilis. The Journal of biological chemistry 281: 21720–21727. pmid:16751195 doi: 10.1074/jbc.m604071200
|
[10] | Laurenceau R, Pehau-Arnaudet G, Baconnais S, Gault J, Malosse C, et al. (2013) A type IV pilus mediates DNA binding during natural transformation in Streptococcus pneumoniae. PLoS pathogens 9: e1003473. doi: 10.1371/journal.ppat.1003473. pmid:23825953
|
[11] | Dubnau D (1999) DNA uptake in bacteria. Annual review of microbiology 53: 217–244. pmid:10547691 doi: 10.1146/annurev.micro.53.1.217
|
[12] | Nunn D, Bergman S, Lory S (1990) Products of three accessory genes, pilB, pilC, and pilD, are required for biogenesis of Pseudomonas aeruginosa pili. Journal of bacteriology 172: 2911–2919. pmid:1971619
|
[13] | Mann JM, Carabetta VJ, Cristea IM, Dubnau D (2013) Complex formation and processing of the minor transformation pilins of Bacillus subtilis. Molecular microbiology 90: 1201–1215. doi: 10.1111/mmi.12425. pmid:24164455
|
[14] | Craig L, Pique ME, Tainer JA (2004) Type IV pilus structure and bacterial pathogenicity. Nature reviews Microbiology 2: 363–378. pmid:15100690 doi: 10.1038/nrmicro885
|
[15] | Campos M, Nilges M, Cisneros DA, Francetic O (2010) Detailed structural and assembly model of the type II secretion pilus from sparse data. Proceedings of the National Academy of Sciences of the United States of America 107: 13081–13086. doi: 10.1073/pnas.1001703107. pmid:20616068
|
[16] | Nivaskumar M, Bouvier G, Campos M, Nadeau N, Yu X, et al. (2014) Distinct docking and stabilization steps of the Pseudopilus conformational transition path suggest rotational assembly of type IV pilus-like fibers. Structure 22: 685–696. doi: 10.1016/j.str.2014.03.001. pmid:24685147
|
[17] | Havarstein LS, Martin B, Johnsborg O, Granadel C, Claverys JP (2006) New insights into the pneumococcal fratricide: relationship to clumping and identification of a novel immunity factor. Molecular microbiology 59: 1297–1307. pmid:16430701 doi: 10.1111/j.1365-2958.2005.05021.x
|
[18] | Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. Journal of molecular biology 215: 403–410. pmid:2231712 doi: 10.1016/s0022-2836(05)80360-2
|
[19] | Extance J, Crennell SJ, Eley K, Cripps R, Hough DW, et al. (2013) Structure of a bifunctional alcohol dehydrogenase involved in bioethanol generation in Geobacillus thermoglucosidasius. Acta crystallographica Section D, Biological crystallography 69: 2104–2115. doi: 10.1107/S0907444913020349. pmid:24100328
|
[20] | Kawata T, Masuda K, Nomura S (1982) Superprecipitation-like phenomenon and destruction induced by adenosine 5'-triphosphate in spirosomes isolated from Lactobacillus brevis. Microbiology and immunology 26: 979–983. pmid:6298583 doi: 10.1111/j.1348-0421.1982.tb00245.x
|
[21] | Kessler D, Herth W, Knappe J (1992) Ultrastructure and pyruvate formate-lyase radical quenching property of the multienzymic AdhE protein of Escherichia coli. The Journal of biological chemistry 267: 18073–18079. pmid:1325457
|
[22] | Matayoshi S, Oda H (1985) Detection of fine spiral structures (spirosomes) by weak sonication in some bacterial strains. Microbiology and immunology 29: 13–20. pmid:3990585 doi: 10.1111/j.1348-0421.1985.tb00798.x
|
[23] | Matayoshi S, Oda H, Sarwar G (1989) Relationship between the production of spirosomes and anaerobic glycolysis activity in Escherichia coli B. Journal of general microbiology 135: 525–529. pmid:2695595 doi: 10.1099/00221287-135-3-525
|
[24] | Nomura S, Masuda K, Kawata T (1989) Comparative characterization of spirosomes isolated from Lactobacillus brevis, Lactobacillus fermentum, and Lactobacillus buchneri. Microbiology and immunology 33: 23–34. pmid:2733612 doi: 10.1111/j.1348-0421.1989.tb01494.x
|
[25] | Ueki Y, Masuda K, Kawata T (1982) Purification and characterization of spirosomes in Lactobacillus brevis. Microbiology and immunology 26: 199–211. pmid:7109979 doi: 10.1111/j.1348-0421.1982.tb00172.x
|
[26] | Yamato M, Takahashi Y, Tomotake H, Ota F, Hirota K, et al. (1994) Monoclonal antibodies to spirosin of Yersinia enterocolitica and analysis of the localization of spirosome by use of them. Microbiology and immunology 38: 177–182. pmid:7521508 doi: 10.1111/j.1348-0421.1994.tb01762.x
|
[27] | Burghout P, Bootsma HJ, Kloosterman TG, Bijlsma JJ, de Jongh CE, et al. (2007) Search for genes essential for pneumococcal transformation: the RADA DNA repair protein plays a role in genomic recombination of donor DNA. Journal of bacteriology 189: 6540–6550. pmid:17631629 doi: 10.1128/jb.00573-07
|
[28] | Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, et al. (2004) UCSF Chimera—a visualization system for exploratory research and analysis. Journal of computational chemistry 25: 1605–1612. pmid:15264254 doi: 10.1002/jcc.20084
|
[29] | Sebaihia M, Wren BW, Mullany P, Fairweather NF, Minton N, et al. (2006) The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nature genetics 38: 779–786. pmid:16804543 doi: 10.1038/ng1830
|
[30] | Xu P, Ge X, Chen L, Wang X, Dou Y, et al. (2011) Genome-wide essential gene identification in Streptococcus sanguinis. Scientific reports 1: 125. doi: 10.1038/srep00125. pmid:22355642
|
[31] | Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. Journal of molecular biology 372: 774–797. pmid:17681537 doi: 10.1016/j.jmb.2007.05.022
|
[32] | Zhang YH (2011) Substrate channeling and enzyme complexes for biotechnological applications. Biotechnology advances 29: 715–725. doi: 10.1016/j.biotechadv.2011.05.020. pmid:21672618
|
[33] | Encheva V, Shah HN, Gharbia SE (2009) Proteomic analysis of the adaptive response of Salmonella enterica serovar Typhimurium to growth under anaerobic conditions. Microbiology 155: 2429–2441. doi: 10.1099/mic.0.026138-0. pmid:19389776
|
[34] | Eldholm V, Johnsborg O, Haugen K, Ohnstad HS, Havarstein LS (2009) Fratricide in Streptococcus pneumoniae: contributions and role of the cell wall hydrolases CbpD, LytA and LytC. Microbiology 155: 2223–2234. doi: 10.1099/mic.0.026328-0. pmid:19389766
|
[35] | Gubellini F, Verdon G, Karpowich NK, Luff JD, Boel G, et al. (2011) Physiological response to membrane protein overexpression in E. coli. Molecular & cellular proteomics: MCP 10: M111 007930. doi: 10.1074/mcp.m111.007930
|
[36] | Wagner S, Baars L, Ytterberg AJ, Klussmeier A, Wagner CS, et al. (2007) Consequences of membrane protein overexpression in Escherichia coli. Molecular & cellular proteomics: MCP 6: 1527–1550. doi: 10.1074/mcp.m600431-mcp200
|
[37] | Okorokov AL, Chaban YL, Bugreev DV, Hodgkinson J, Mazin AV, et al. (2010) Structure of the hDmc1-ssDNA filament reveals the principles of its architecture. PloS one 5: e8586. doi: 10.1371/journal.pone.0008586. pmid:20062530
|
[38] | Williams RC, Spengler SJ (1986) Fibers of RecA protein and complexes of RecA protein and single-stranded phi X174 DNA as visualized by negative-stain electron microscopy. Journal of molecular biology 187: 109–118. pmid:2937923 doi: 10.1016/0022-2836(86)90410-9
|
[39] | Yu X, VanLoock MS, Yang S, Reese JT, Egelman EH (2004) What is the structure of the RecA-DNA filament? Current protein & peptide science 5: 73–79. doi: 10.2174/1389203043486883
|
[40] | Berge M, Mortier-Barriere I, Martin B, Claverys JP (2003) Transformation of Streptococcus pneumoniae relies on DprA- and RecA-dependent protection of incoming DNA single strands. Molecular microbiology 50: 527–536. pmid:14617176 doi: 10.1046/j.1365-2958.2003.03702.x
|
[41] | Cox MM (1999) Recombinational DNA repair in bacteria and the RecA protein. Progress in nucleic acid research and molecular biology 63: 311–366. pmid:10506835 doi: 10.1016/s0079-6603(08)60726-6
|
[42] | Mizuno N, Dramicanin M, Mizuuchi M, Adam J, Wang Y, et al. (2013) MuB is an AAA+ ATPase that forms helical filaments to control target selection for DNA transposition. Proceedings of the National Academy of Sciences of the United States of America 110: E2441–2450. doi: 10.1073/pnas.1309499110. pmid:23776210
|
[43] | Shih YL, Rothfield L (2006) The bacterial cytoskeleton. Microbiology and molecular biology reviews: MMBR 70: 729–754. pmid:16959967 doi: 10.1128/mmbr.00017-06
|
[44] | Stubbs G, Kendall A (2012) Helical viruses. Advances in experimental medicine and biology 726: 631–658. doi: 10.1007/978-1-4614-0980-9_28. pmid:22297534
|
[45] | Seitz P, Blokesch M (2013) DNA-uptake machinery of naturally competent Vibrio cholerae. Proceedings of the National Academy of Sciences of the United States of America 110: 17987–17992. doi: 10.1073/pnas.1315647110. pmid:24127573
|
[46] | Vidal JE, Howery KE, Ludewick HP, Nava P, Klugman KP (2013) Quorum-sensing systems LuxS/autoinducer 2 and Com regulate Streptococcus pneumoniae biofilms in a bioreactor with living cultures of human respiratory cells. Infection and immunity 81: 1341–1353. doi: 10.1128/IAI.01096-12. pmid:23403556
|
[47] | Berge M, Moscoso M, Prudhomme M, Martin B, Claverys JP (2002) Uptake of transforming DNA in Gram-positive bacteria: a view from Streptococcus pneumoniae. Molecular microbiology 45: 411–421. pmid:12123453 doi: 10.1046/j.1365-2958.2002.03013.x
|
[48] | Cehovin A, Simpson PJ, McDowell MA, Brown DR, Noschese R, et al. (2013) Specific DNA recognition mediated by a type IV pilin. Proceedings of the National Academy of Sciences of the United States of America 110: 3065–3070. doi: 10.1073/pnas.1218832110. pmid:23386723
|
[49] | van Schaik EJ, Giltner CL, Audette GF, Keizer DW, Bautista DL, et al. (2005) DNA binding: a novel function of Pseudomonas aeruginosa type IV pili. Journal of bacteriology 187: 1455–1464. pmid:15687210 doi: 10.1128/jb.187.4.1455-1464.2005
|
[50] | Provvedi R, Dubnau D (1999) ComEA is a DNA receptor for transformation of competent Bacillus subtilis. Molecular microbiology 31: 271–280. pmid:9987128 doi: 10.1046/j.1365-2958.1999.01170.x
|
[51] | Kurre R, Maier B (2012) Oxygen depletion triggers switching between discrete speed modes of gonococcal type IV pili. Biophysical journal 102: 2556–2563. doi: 10.1016/j.bpj.2012.04.020. pmid:22713571
|
[52] | Maier B, Chen I, Dubnau D, Sheetz MP (2004) DNA transport into Bacillus subtilis requires proton motive force to generate large molecular forces. Nature structural & molecular biology 11: 643–649. doi: 10.1038/nsmb783
|
[53] | von Hippel PH, Berg OG (1989) Facilitated target location in biological systems. The Journal of biological chemistry 264: 675–678. pmid:2642903
|
[54] | Prudhomme M, Camilli A, Claverys J-P (2007) In vitro mariner mutagenesis of Streptococcus pneumoniae: tools and traps. In: Hakenbeck R, Chhatwal GS, editors. The Molecular Biology of Streptococci Norwich, UK: Horizon Scientific Press. pp. 511–517.
|
[55] | Wilm M, Shevchenko A, Houthaeve T, Breit S, Schweigerer L, et al. (1996) Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 379: 466–469. pmid:8559255 doi: 10.1038/379466a0
|
[56] | Cox J, Matic I, Hilger M, Nagaraj N, Selbach M, et al. (2009) A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nature protocols 4: 698–705. doi: 10.1038/nprot.2009.36. pmid:19373234
|
[57] | Mindell JA, Grigorieff N (2003) Accurate determination of local defocus and specimen tilt in electron microscopy. Journal of structural biology 142: 334–347. pmid:12781660 doi: 10.1016/s1047-8477(03)00069-8
|
[58] | Shaikh TR, Gao H, Baxter WT, Asturias FJ, Boisset N, et al. (2008) SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Nature protocols 3: 1941–1974. doi: 10.1038/nprot.2008.156. pmid:19180078
|
[59] | Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, et al. (2007) EMAN2: an extensible image processing suite for electron microscopy. Journal of structural biology 157: 38–46. pmid:16859925 doi: 10.1016/j.jsb.2006.05.009
|
[60] | Martin B, Granadel C, Campo N, Henard V, Prudhomme M, et al. (2010) Expression and maintenance of ComD-ComE, the two-component signal-transduction system that controls competence of Streptococcus pneumoniae. Molecular microbiology 75: 1513–1528. doi: 10.1111/j.1365-2958.2010.07071.x. pmid:20180906
|
[61] | Claverys JP, Martin B, Polard P (2009) The genetic transformation machinery: composition, localization, and mechanism. FEMS microbiology reviews 33: 643–656. doi: 10.1111/j.1574-6976.2009.00164.x. pmid:19228200
|