全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Hepatitis D Virus Infection of Mice Expressing Human Sodium Taurocholate Co-transporting Polypeptide

DOI: 10.1371/journal.ppat.1004840

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hepatitis D virus (HDV) is the smallest virus known to infect human. About 15 million people worldwide are infected by HDV among those 240 million infected by its helper hepatitis B virus (HBV). Viral hepatitis D is considered as one of the most severe forms of human viral hepatitis. No specific antivirals are currently available to treat HDV infection and antivirals against HBV do not ameliorate hepatitis D. Liver sodium taurocholate co-transporting polypeptide (NTCP) was recently identified as a common entry receptor for HDV and HBV in cell cultures. Here we show HDV can infect mice expressing human NTCP (hNTCP-Tg). Antibodies against critical regions of HBV envelope proteins blocked HDV infection in the hNTCP-Tg mice. The infection was acute yet HDV genome replication occurred efficiently, evident by the presence of antigenome RNA and edited RNA species specifying large delta antigen in the livers of infected mice. The resolution of HDV infection appears not dependent on adaptive immune response, but might be facilitated by innate immunity. Liver RNA-seq analyses of HDV infected hNTCP-Tg and type I interferon receptor 1 (IFNα/βR1) null hNTCP-Tg mice indicated that in addition to induction of type I IFN response, HDV infection was also associated with up-regulation of novel cellular genes that may modulate HDV infection. Our work has thus proved the concept that NTCP is a functional receptor for HDV infection in vivo and established a convenient small animal model for investigation of HDV pathogenesis and evaluation of antiviral therapeutics against the early steps of infection for this important human pathogen.

References

[1]  Lai MM (1995) The molecular biology of hepatitis delta virus. Annu Rev Biochem 64: 259–286. pmid:7574482 doi: 10.1146/annurev.bi.64.070195.001355
[2]  Taylor JM (2006) Hepatitis delta virus. Virology 344: 71–76. pmid:16364738 doi: 10.1016/j.virol.2005.09.033
[3]  Ciancio A, Rizzetto M (2014) Chronic hepatitis D at a standstill: where do we go from here? Nat Rev Gastroenterol Hepatol 11: 68–71. doi: 10.1038/nrgastro.2013.164. pmid:24019153
[4]  Wedemeyer H, Manns MP (2010) Epidemiology, pathogenesis and management of hepatitis D: update and challenges ahead. Nat Rev Gastroenterol Hepatol 7: 31–40. doi: 10.1038/nrgastro.2009.205. pmid:20051970
[5]  Hagenbuch B, Meier PJ (1994) Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter. J Clin Invest 93: 1326–1331. pmid:8132774 doi: 10.1172/jci117091
[6]  Yan H, Zhong G, Xu G, He W, Jing Z, et al. (2012) Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife 1: e00049. doi: 10.7554/eLife.00049. pmid:23150796
[7]  Yan H, Peng B, He W, Zhong G, Qi Y, et al. (2013) Molecular determinants of hepatitis B and D virus entry restriction in mouse sodium taurocholate cotransporting polypeptide. J Virol 87: 7977–7991. doi: 10.1128/JVI.03540-12. pmid:23678176
[8]  Ni Y, Lempp FA, Mehrle S, Nkongolo S, Kaufman C, et al. (2013) Hepatitis B and D Viruses Exploit Sodium Taurocholate Co-transporting Polypeptide for Species-specific Entry into Hepatocytes. Gastroenterology 146: 1070–1083. doi: 10.1053/j.gastro.2013.12.024. pmid:24361467
[9]  Li H, Zhuang Q, Wang Y, Zhang T, Zhao J, et al. (2014) HBV life cycle is restricted in mouse hepatocytes expressing human NTCP. Cell Mol Immunol 11: 175–183. doi: 10.1038/cmi.2013.66. pmid:24509445
[10]  Sureau C, Salisse J (2013) A conformational heparan sulfate binding site essential to infectivity overlaps with the conserved hepatitis B virus a-determinant. Hepatology 57: 985–994. doi: 10.1002/hep.26125. pmid:23161433
[11]  Chen PJ, Kalpana G, Goldberg J, Mason W, Werner B, et al. (1986) Structure and replication of the genome of the hepatitis delta virus. Proc Natl Acad Sci U S A 83: 8774–8778. pmid:2430299 doi: 10.1073/pnas.83.22.8774
[12]  Custer RP, Bosma GC, Bosma MJ (1985) Severe combined immunodeficiency (SCID) in the mouse. Pathology, reconstitution, neoplasms. Am J Pathol 120: 464–477. pmid:2412448
[13]  Christianson SW, Greiner DL, Schweitzer IB, Gott B, Beamer GL, et al. (1996) Role of natural killer cells on engraftment of human lymphoid cells and on metastasis of human T-lymphoblastoid leukemia cells in C57BL/6J-scid mice and in C57BL/6J-scid bg mice. Cell Immunol 171: 186–199. pmid:8806787 doi: 10.1006/cimm.1996.0193
[14]  Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, et al. (1995) Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 154: 180–191. pmid:7995938
[15]  Muller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J, et al. (1994) Functional role of type I and type II interferons in antiviral defense. Science 264: 1918–1921. pmid:8009221 doi: 10.1126/science.8009221
[16]  Stetson DB, Medzhitov R (2006) Type I interferons in host defense. Immunity 25: 373–381. pmid:16979569 doi: 10.1016/j.immuni.2006.08.007
[17]  Sen GC (2001) Viruses and interferons. Annu Rev Microbiol 55: 255–281. pmid:11544356 doi: 10.1146/annurev.micro.55.1.255
[18]  Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, et al. (2011) A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472: 481–485. doi: 10.1038/nature09907. pmid:21478870
[19]  Liu SY, Sanchez DJ, Aliyari R, Lu S, Cheng G (2012) Systematic identification of type I and type II interferon-induced antiviral factors. Proc Natl Acad Sci U S A 109: 4239–4244. doi: 10.1073/pnas.1114981109. pmid:22371602
[20]  Chang J, Sigal LJ, Lerro A, Taylor J (2001) Replication of the human hepatitis delta virus genome Is initiated in mouse hepatocytes following intravenous injection of naked DNA or RNA sequences. J Virol 75: 3469–3473. pmid:11238873 doi: 10.1128/jvi.75.7.3469-3473.2001
[21]  George CX, Samuel CE (1999) Human RNA-specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible. Proc Natl Acad Sci U S A 96: 4621–4626. pmid:10200312 doi: 10.1073/pnas.96.8.4621
[22]  Casey JL (2012) Control of ADAR1 editing of hepatitis delta virus RNAs. Curr Top Microbiol Immunol 353: 123–143. doi: 10.1007/82_2011_146. pmid:21732238
[23]  Bonino F, Heermann KH, Rizzetto M, Gerlich WH (1986) Hepatitis delta virus: protein composition of delta antigen and its hepatitis B virus-derived envelope. J Virol 58: 945–950. pmid:3701932
[24]  Guidotti LG, Matzke B, Schaller H, Chisari FV (1995) High-level hepatitis B virus replication in transgenic mice. J Virol 69: 6158–6169. pmid:7666518
[25]  Raney AK, Eggers CM, Kline EF, Guidotti LG, Pontoglio M, et al. (2001) Nuclear covalently closed circular viral genomic DNA in the liver of hepatocyte nuclear factor 1 alpha-null hepatitis B virus transgenic mice. J Virol 75: 2900–2911. pmid:11222715 doi: 10.1128/jvi.75.6.2900-2911.2001
[26]  Stieger B (2011) The role of the sodium-taurocholate cotransporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation. Handb Exp Pharmacol: 205–259. doi: 10.1007/978-3-642-14541-4_5. pmid:21103971
[27]  Meier A, Mehrle S, Weiss TS, Mier W, Urban S (2012) The myristoylated preS1-domain of the hepatitis B virus L-protein mediates specific binding todifferentiated hepatocytes. Hepatology 58: 31–42. doi: 10.1002/hep.26181
[28]  Schieck A, Schulze A, Gahler C, Muller T, Haberkorn U, et al. (2013) Hepatitis B virus hepatotropism is mediated by specific receptor recognition in the liver and not restricted to susceptible hosts. Hepatology 58: 43–53. doi: 10.1002/hep.26211. pmid:23292963
[29]  Giersch K, Helbig M, Volz T, Allweiss L, Mancke LV, et al. (2013) Persistent hepatitis D virus mono-infection in humanized mice is efficiently converted by hepatitis B virus to a productive co-infection. J Hepatol 60: 538–544. doi: 10.1016/j.jhep.2013.11.010. pmid:24280293
[30]  Lutgehetmann M, Mancke LV, Volz T, Helbig M, Allweiss L, et al. (2012) Humanized chimeric uPA mouse model for the study of hepatitis B and D virus interactions and preclinical drug evaluation. Hepatology 55: 685–694. doi: 10.1002/hep.24758. pmid:22031488
[31]  Levy O (2007) Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat Rev Immunol 7: 379–390. pmid:17457344 doi: 10.1038/nri2075
[32]  Dakic A, Shao QX, D'Amico A, O'Keeffe M, Chen WF, et al. (2004) Development of the dendritic cell system during mouse ontogeny. J Immunol 172: 1018–1027. pmid:14707075 doi: 10.4049/jimmunol.172.2.1018
[33]  Sigel MM (1952) Influence of age on susceptibility to virus infections with particular reference to laboratory animals. Annu Rev Microbiol 6: 247–280. pmid:13008397 doi: 10.1146/annurev.mi.06.100152.001335
[34]  Tregoning JS, Yamaguchi Y, Wang B, Mihm D, Harker JA, et al. (2010) Genetic susceptibility to the delayed sequelae of neonatal respiratory syncytial virus infection is MHC dependent. J Immunol 185: 5384–5391. doi: 10.4049/jimmunol.1001594. pmid:20921522
[35]  Sellers RS (2012) The gene or not the gene—that is the question: understanding the genetically engineered mouse phenotype. Vet Pathol 49: 5–15. doi: 10.1177/0300985811421324. pmid:21971987
[36]  Publicover J, Gaggar A, Nishimura S, Van Horn CM, Goodsell A, et al. (2013) Age-dependent hepatic lymphoid organization directs successful immunity to hepatitis B. J Clin Invest 123: 3728–3739. doi: 10.1172/JCI68182. pmid:23925290
[37]  Publicover J, Goodsell A, Nishimura S, Vilarinho S, Wang ZE, et al. (2011) IL-21 is pivotal in determining age-dependent effectiveness of immune responses in a mouse model of human hepatitis B. J Clin Invest 121: 1154–1162. doi: 10.1172/JCI44198. pmid:21393863
[38]  Ponzetto A, Cote PJ, Popper H, Hoyer BH, London WT, et al. (1984) Transmission of the hepatitis B virus-associated delta agent to the eastern woodchuck. Proc Natl Acad Sci U S A 81: 2208–2212. pmid:6585793 doi: 10.1073/pnas.81.7.2208
[39]  Guilhot S, Huang SN, Xia YP, La Monica N, Lai MM, et al. (1994) Expression of the hepatitis delta virus large and small antigens in transgenic mice. J Virol 68: 1052–1058. pmid:8289334
[40]  Polo JM, Jeng KS, Lim B, Govindarajan S, Hofman F, et al. (1995) Transgenic mice support replication of hepatitis delta virus RNA in multiple tissues, particularly in skeletal muscle. J Virol 69: 4880–4887. pmid:7609056
[41]  Ponzetto A, Hoyer BH, Popper H, Engle R, Purcell RH, et al. (1987) Titration of the infectivity of hepatitis D virus in chimpanzees. J Infect Dis 155: 72–78. pmid:3794405 doi: 10.1093/infdis/155.1.72
[42]  Netter HJ, Kajino K, Taylor JM (1993) Experimental transmission of human hepatitis delta virus to the laboratory mouse. J Virol 67: 3357–3362. pmid:8497056
[43]  Hartwig D, Schutte C, Warnecke J, Dorn I, Hennig H, et al. (2006) The large form of ADAR 1 is responsible for enhanced hepatitis delta virus RNA editing in interferon-alpha-stimulated host cells. J Viral Hepat 13: 150–157. pmid:16475990 doi: 10.1111/j.1365-2893.2005.00663.x
[44]  Chao M, Hsieh SY, Taylor J (1990) Role of two forms of hepatitis delta virus antigen: evidence for a mechanism of self-limiting genome replication. J Virol 64: 5066–5069. pmid:2398535
[45]  Casey JL, Gerin JL (1995) Hepatitis D virus RNA editing: specific modification of adenosine in the antigenomic RNA. J Virol 69: 7593–7600. pmid:7494266

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133