[1] | Hermann C, Hermann J, Munzel U, Ruchel R (1999) Bacterial flora accompanying Candida yeasts in clinical specimens. Mycoses 42: 619–627. pmid:10680438 doi: 10.1046/j.1439-0507.1999.00519.x
|
[2] | Azoulay E, Timsit JF, Tafflet M, de Lassence A, Darmon M, et al. (2006) Candida colonization of the respiratory tract and subsequent pseudomonas ventilator-associated pneumonia. Chest 129: 110–117. pmid:16424420 doi: 10.1378/chest.129.1.110
|
[3] | Bauernfeind A, Bertele RM, Harms K, Horl G, Jungwirth R, et al. (1987) Qualitative and quantitative microbiological analysis of sputa of 102 patients with cystic fibrosis. Infection 15: 270–277. pmid:3117700 doi: 10.1007/bf01644137
|
[4] | McAlester G, O'Gara F, Morrissey JP (2008) Signal-mediated interactions between Pseudomonas aeruginosa and Candida albicans. J Med Microbiol 57: 563–569. doi: 10.1099/jmm.0.47705-0. pmid:18436588
|
[5] | Gupta N, Haque A, Mukhopadhyay G, Narayan RP, Prasad R (2005) Interactions between bacteria and Candida in the burn wound. Burns 31: 375–378. pmid:15774298 doi: 10.1016/j.burns.2004.11.012
|
[6] | Marrie TJ, Costerton JW (1984) Scanning and transmission electron microscopy of in situ bacterial colonization of intravenous and intraarterial catheters. J Clin Microbiol 19: 687–693. pmid:6429190
|
[7] | Tchekmedyian NS, Newman K, Moody MR, Costerton JW, Aisner J, et al. (1986) Special studies of the Hickman catheter of a patient with recurrent bacteremia and candidemia. Am J Med Sci 291: 419–424. pmid:3717200 doi: 10.1097/00000441-198606000-00009
|
[8] | Hogan DA, Vik A, Kolter R (2004) A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol 54: 1212–1223. pmid:15554963 doi: 10.1111/j.1365-2958.2004.04349.x
|
[9] | Brand A, Barnes JD, Mackenzie KS, Odds FC, Gow NA (2008) Cell wall glycans and soluble factors determine the interactions between the hyphae of Candida albicans and Pseudomonas aeruginosa. FEMS Microbiol Lett 287: 48–55. doi: 10.1111/j.1574-6968.2008.01301.x. pmid:18680523
|
[10] | Hogan DA, Kolter R (2002) Pseudomonas-Candida interactions: an ecological role for virulence factors. Science 296: 2229–2232. pmid:12077418 doi: 10.1126/science.1070784
|
[11] | Cugini C, Calfee MW, Farrow JM 3rd, Morales DK, Pesci EC, et al. (2007) Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol Microbiol 65: 896–906. pmid:17640272 doi: 10.1111/j.1365-2958.2007.05840.x
|
[12] | de Macedo JL, Santos JB (2005) Bacterial and fungal colonization of burn wounds. Mem Inst Oswaldo Cruz 100: 535–539. pmid:16184232 doi: 10.1590/s0074-02762005000500014
|
[13] | Hughes WT, Kim HK (1973) Mycoflora in cystic fibrosis: some ecologic aspects of Pseudomonas aeruginosa and Candida albicans. Mycopathol Mycol Appl 50: 261–269. pmid:4199669 doi: 10.1007/bf02053377
|
[14] | Burns JL, Van Dalfsen JM, Shawar RM, Otto KL, Garber RL, et al. (1999) Effect of chronic intermittent administration of inhaled tobramycin on respiratory microbial flora in patients with cystic fibrosis. J Infect Dis 179: 1190–1196. pmid:10191222 doi: 10.1086/314727
|
[15] | Nseir S, Jozefowicz E, Cavestri B, Sendid B, Di Pompeo C, et al. (2007) Impact of antifungal treatment on Candida-Pseudomonas interaction: a preliminary retrospective case-control study. Intensive Care Med 33: 137–142. pmid:17115135 doi: 10.1007/s00134-006-0422-0
|
[16] | Pizzo PA, Poplack D, editors (2011) Principles and Practice of Pediatric Oncology, 6th Edition. Philadelphia: Lippincott Williams & Wilkins. 1531
|
[17] | Fanci R, Paci C, Anichini P, Pecile P, Marra G, et al. (2003) Incidence and molecular epidemiology of Pseudomonas aeruginosa bacteremias in patients with acute leukemia: analysis by pulsed-field gel electrophoresis. New Microbiol 26: 353–361. pmid:14596346
|
[18] | Tancrede CH, Andremont AO (1985) Bacterial translocation and gram-negative bacteremia in patients with hematological malignancies. J Infect Dis 152: 99–103. pmid:3925032 doi: 10.1093/infdis/152.1.99
|
[19] | Miranda LN, van der Heijden IM, Costa SF, Sousa AP, Sienra RA, et al. (2009) Candida colonisation as a source for candidaemia. J Hosp Infect 72: 9–16. doi: 10.1016/j.jhin.2009.02.009. pmid:19303662
|
[20] | Nucci M, Anaissie E (2001) Revisiting the source of candidemia: skin or gut? Clin Infect Dis 33: 1959–1967. pmid:11702290 doi: 10.1086/323759
|
[21] | Berg RD (1999) Bacterial translocation from the gastrointestinal tract. Adv Exp Med Biol 473: 11–30. pmid:10659341
|
[22] | Pasqualotto AC, Nedel WL, Machado TS, Severo LC (2006) Risk factors and outcome for nosocomial breakthrough candidaemia. J Infect 52: 216–222. pmid:15936825 doi: 10.1016/j.jinf.2005.04.020
|
[23] | Rosen GP, Nielsen K, Glenn S, Abelson J, Deville J, et al. (2005) Invasive fungal infections in pediatric oncology patients: 11-year experience at a single institution. J Pediatr Hematol Oncol 27: 135–140. pmid:15750444 doi: 10.1097/01.mph.0000155861.38641.ca
|
[24] | Fan D, Coughlin LA, Neubauer MM, Kim J, Kim MS, et al. (2015) Activation of HIF-1alpha and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat Med. doi: 10.1038/nm.3871
|
[25] | Koh AY, Kohler JR, Coggshall KT, Van Rooijen N, Pier GB (2008) Mucosal damage and neutropenia are required for Candida albicans dissemination. PLoS Pathog 4: e35. doi: 10.1371/journal.ppat.0040035. pmid:18282097
|
[26] | White SJ, Rosenbach A, Lephart P, Nguyen D, Benjamin A, et al. (2007) Self-regulation of Candida albicans population size during GI colonization. PLoS Pathog 3: e184. pmid:18069889 doi: 10.1371/journal.ppat.0030184
|
[27] | Noverr MC, Huffnagle GB (2004) Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infect Immun 72: 6206–6210. pmid:15501745 doi: 10.1128/iai.72.11.6206-6210.2004
|
[28] | Mason KL, Erb Downward JR, Mason KD, Falkowski NR, Eaton KA, et al. (2012) Candida albicans and bacterial microbiota interactions in the cecum during recolonization following broad-spectrum antibiotic therapy. Infect Immun 80: 3371–3380. doi: 10.1128/IAI.00449-12. pmid:22778094
|
[29] | Taur Y, Xavier JB, Lipuma L, Ubeda C, Goldberg J, et al. (2012) Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis 55: 905–914. doi: 10.1093/cid/cis580. pmid:22718773
|
[30] | Koh AY, Mikkelsen PJ, Smith RS, Coggshall KT, Kamei A, et al. (2010) Utility of in vivo transcription profiling for identifying Pseudomonas aeruginosa genes needed for gastrointestinal colonization and dissemination. PLoS One 5: e15131. doi: 10.1371/journal.pone.0015131. pmid:21170272
|
[31] | Koh AY, Priebe GP, Pier GB (2005) Virulence of Pseudomonas aeruginosa in a murine model of gastrointestinal colonization and dissemination in neutropenia. Infect Immun 73: 2262–2272. pmid:15784570 doi: 10.1128/iai.73.4.2262-2272.2005
|
[32] | Sawa T, Ohara M, Kurahashi K, Twining SS, Frank DW, et al. (1998) In vitro cellular toxicity predicts Pseudomonas aeruginosa virulence in lung infections. Infect Immun 66: 3242–3249. pmid:9632591
|
[33] | Falgier C, Kegley S, Podgorski H, Heisel T, Storey K, et al. (2011) Candida species differ in their interactions with immature human gastrointestinal epithelial cells. Pediatr Res 69: 384–389. doi: 10.1203/PDR.0b013e31821269d5. pmid:21283049
|
[34] | Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, et al. (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90: 939–949. pmid:9298905 doi: 10.1016/s0092-8674(00)80358-x
|
[35] | Kong EF, Kucharikova S, Van Dijck P, Peters BM, Shirtliff ME, et al. (2015) Clinical implications of oral candidiasis: host tissue damage and disseminated bacterial disease. Infect Immun 83: 604–613. doi: 10.1128/IAI.02843-14. pmid:25422264
|
[36] | Schlecht LM, Peters BM, Krom BP, Freiberg JA, Hansch GM, et al. (2015) Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue. Microbiology 161: 168–181. doi: 10.1099/mic.0.083485-0. pmid:25332378
|
[37] | Ganz T, Nemeth E (2006) Regulation of iron acquisition and iron distribution in mammals. Biochim Biophys Acta 1763: 690–699. pmid:16790283 doi: 10.1016/j.bbamcr.2006.03.014
|
[38] | Skaar EP (2010) The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog 6: e1000949. doi: 10.1371/journal.ppat.1000949. pmid:20711357
|
[39] | Takase H, Nitanai H, Hoshino K, Otani T (2000) Impact of siderophore production on Pseudomonas aeruginosa infections in immunosuppressed mice. Infect Immun 68: 1834–1839. pmid:10722571 doi: 10.1128/iai.68.4.1834-1839.2000
|
[40] | Takase H, Nitanai H, Hoshino K, Otani T (2000) Requirement of the Pseudomonas aeruginosa tonB gene for high-affinity iron acquisition and infection. Infect Immun 68: 4498–4504. pmid:10899848 doi: 10.1128/iai.68.8.4498-4504.2000
|
[41] | Meyer JM, Neely A, Stintzi A, Georges C, Holder IA (1996) Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect Immun 64: 518–523. pmid:8550201
|
[42] | Imperi F, Massai F, Facchini M, Frangipani E, Visaggio D, et al. (2013) Repurposing the antimycotic drug flucytosine for suppression of Pseudomonas aeruginosa pathogenicity. Proc Natl Acad Sci U S A 110: 7458–7463. doi: 10.1073/pnas.1222706110. pmid:23569238
|
[43] | Almeida RS, Wilson D, Hube B (2009) Candida albicans iron acquisition within the host. FEMS Yeast Res 9: 1000–1012. doi: 10.1111/j.1567-1364.2009.00570.x. pmid:19788558
|
[44] | Kronstad JW, Cadieux B, Jung WH (2013) Pathogenic yeasts deploy cell surface receptors to acquire iron in vertebrate hosts. PLoS Pathog 9: e1003498. doi: 10.1371/journal.ppat.1003498. pmid:24009498
|
[45] | Murciano C, Villamon E, O'Connor JE, Gozalbo D, Gil ML (2006) Killed Candida albicans yeasts and hyphae inhibit gamma interferon release by murine natural killer cells. Infect Immun 74: 1403–1406. pmid:16428793 doi: 10.1128/iai.74.2.1403-1406.2006
|
[46] | Paulus SC, van Saene HK, Hemsworth S, Hughes J, Ng A, et al. (2005) A prospective study of septicaemia on a paediatric oncology unit: a three-year experience at The Royal Liverpool Children's Hospital, Alder Hey, UK. Eur J Cancer 41: 2132–2140. pmid:16129600 doi: 10.1016/j.ejca.2005.04.037
|
[47] | Navarathna DH, Hornby JM, Krishnan N, Parkhurst A, Duhamel GE, et al. (2007) Effect of farnesol on a mouse model of systemic candidiasis, determined by use of a DPP3 knockout mutant of Candida albicans. Infect Immun 75: 1609–1618. pmid:17283095 doi: 10.1128/iai.01182-06
|
[48] | Stookey LL (1970) Ferrozine—a new spectrophotometric reagent for iron. Anal Chem 42: 779–781. doi: 10.1021/ac60289a016
|
[49] | Banin E, Vasil ML, Greenberg EP (2005) Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci U S A 102: 11076–11081. pmid:16043697 doi: 10.1073/pnas.0504266102
|
[50] | Rogan MP, Taggart CC, Greene CM, Murphy PG, O'Neill SJ, et al. (2004) Loss of microbicidal activity and increased formation of biofilm due to decreased lactoferrin activity in patients with cystic fibrosis. J Infect Dis 190: 1245–1253. pmid:15346334 doi: 10.1086/423821
|
[51] | Singh PK, Parsek MR, Greenberg EP, Welsh MJ (2002) A component of innate immunity prevents bacterial biofilm development. Nature 417: 552–555. pmid:12037568 doi: 10.1038/417552a
|
[52] | Kaneko Y, Thoendel M, Olakanmi O, Britigan BE, Singh PK (2007) The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J Clin Invest 117: 877–888. pmid:17364024 doi: 10.1172/jci30783
|
[53] | Genco CA, Chen CY, Arko RJ, Kapczynski DR, Morse SA (1991) Isolation and characterization of a mutant of Neisseria gonorrhoeae that is defective in the uptake of iron from transferrin and haemoglobin and is avirulent in mouse subcutaneous chambers. J Gen Microbiol 137: 1313–1321. pmid:1919507 doi: 10.1099/00221287-137-6-1313
|
[54] | Litwin CM, Calderwood SB (1993) Role of iron in regulation of virulence genes. Clin Microbiol Rev 6: 137–149. pmid:8472246
|
[55] | Lamont IL, Beare PA, Ochsner U, Vasil AI, Vasil ML (2002) Siderophore-mediated signaling regulates virulence factor production in Pseudomonasaeruginosa. Proc Natl Acad Sci U S A 99: 7072–7077. pmid:11997446 doi: 10.1073/pnas.092016999
|
[56] | Nicas TI, Bradley J, Lochner JE, Iglewski BH (1985) The role of exoenzyme S in infections with Pseudomonas aeruginosa. J Infect Dis 152: 716–721. pmid:2995500 doi: 10.1093/infdis/152.4.716
|
[57] | Tang H, Kays M, Prince A (1995) Role of Pseudomonas aeruginosa pili in acute pulmonary infection. Infect Immun 63: 1278–1285. pmid:7890385
|
[58] | Tang HB, DiMango E, Bryan R, Gambello M, Iglewski BH, et al. (1996) Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infect Immun 64: 37–43. pmid:8557368
|
[59] | Amidon GL, Lee HJ (1994) Absorption of peptide and peptidomimetic drugs. Annu Rev Pharmacol Toxicol 34: 321–341. pmid:8042854 doi: 10.1146/annurev.pa.34.040194.001541
|
[60] | Lee YH, Sinko PJ (2000) Oral delivery of salmon calcitonin. Adv Drug Deliv Rev 42: 225–238. doi: 10.1016/s0169-409x(00)00063-6
|
[61] | Bachmanov AA, Reed DR, Beauchamp GK, Tordoff MG (2002) Food intake, water intake, and drinking spout side preference of 28 mouse strains. Behav Genet 32: 435–443. pmid:12467341
|
[62] | Padmanabhan P, Grosse J, Asad AB, Radda GK, Golay X (2013) Gastrointestinal transit measurements in mice with 99mTc-DTPA-labeled activated charcoal using NanoSPECT-CT. EJNMMI Res 3: 60. doi: 10.1186/2191-219X-3-60. pmid:23915679
|
[63] | Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27: 215–237. pmid:12829269 doi: 10.1016/s0168-6445(03)00055-x
|
[64] | Hunter RC, Asfour F, Dingemans J, Osuna BL, Samad T, et al. (2013) Ferrous iron is a significant component of bioavailable iron in cystic fibrosis airways. MBio 4. doi: 10.1128/mbio.00557-13
|
[65] | Konings AF, Martin LW, Sharples KJ, Roddam LF, Latham R, et al. (2013) Pseudomonas aeruginosa uses multiple pathways to acquire iron during chronic infection in cystic fibrosis lungs. Infect Immun 81: 2697–2704. doi: 10.1128/IAI.00418-13. pmid:23690396
|
[66] | Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ, et al. (1988) Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut 29: 1035–1041. pmid:3410329 doi: 10.1136/gut.29.8.1035
|
[67] | Moura E, Verheul AF, Marx JJ (1998) A functional defect in hereditary haemochromatosis monocytes and monocyte-derived macrophages. Eur J Clin Invest 28: 164–173. pmid:9541131 doi: 10.1046/j.1365-2362.1998.00263.x
|
[68] | van Asbeck BS, Marx JJ, Struyvenberg A, Verhoef J (1984) Functional defects in phagocytic cells from patients with iron overload. J Infect 8: 232–240. pmid:6736664 doi: 10.1016/s0163-4453(84)93955-0
|
[69] | Patel RM, Myers LS, Kurundkar AR, Maheshwari A, Nusrat A, et al. (2012) Probiotic bacteria induce maturation of intestinal claudin 3 expression and barrier function. Am J Pathol 180: 626–635. doi: 10.1016/j.ajpath.2011.10.025. pmid:22155109
|
[70] | Grillot R, Portmann-Coffin V, Ambroise-Thomas P (1994) Growth inhibition of pathogenic yeasts by Pseudomonas aeruginosa in vitro: clinical implications in blood cultures. Mycoses 37: 343–347. pmid:7746293
|
[71] | Kerr JR (1994) Suppression of fungal growth exhibited by Pseudomonas aeruginosa. J Clin Microbiol 32: 525–527. pmid:8150966
|
[72] | Kerr JR, Taylor GW, Rutman A, Hoiby N, Cole PJ, et al. (1999) Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth. J Clin Pathol 52: 385–387. pmid:10560362 doi: 10.1136/jcp.52.5.385
|
[73] | Ray TL, Payne CD (1988) Scanning electron microscopy of epidermal adherence and cavitation in murine candidiasis: a role for Candida acid proteinase. Infect Immun 56: 1942–1949. pmid:3294180
|
[74] | Scherwitz C (1982) Ultrastructure of human cutaneous candidosis. J Invest Dermatol 78: 200–205. pmid:7035576 doi: 10.1111/1523-1747.ep12506451
|
[75] | Purschke FG, Hiller E, Trick I, Rupp S (2012) Flexible survival strategies of Pseudomonas aeruginosa in biofilms result in increased fitness compared with Candida albicans. Mol Cell Proteomics 11: 1652–1669. doi: 10.1074/mcp.M112.017673. pmid:22942357
|
[76] | Peleg AY, Tampakakis E, Fuchs BB, Eliopoulos GM, Moellering RC Jr., et al. (2008) Prokaryote-eukaryote interactions identified by using Caenorhabditis elegans. Proc Natl Acad Sci U S A 105: 14585–14590. doi: 10.1073/pnas.0805048105. pmid:18794525
|
[77] | Akagawa G, Abe S, Yamaguchi H (1995) Mortality of Candida albicans-infected mice is facilitated by superinfection of Escherichia coli or administration of its lipopolysaccharide. J Infect Dis 171: 1539–1544. pmid:7769289 doi: 10.1093/infdis/171.6.1539
|
[78] | Burd RS, Raymond CS, Dunn DL (1992) Endotoxin promotes synergistic lethality during concurrent Escherichia coli and Candida albicans infection. J Surg Res 52: 537–542. pmid:1528027 doi: 10.1016/0022-4804(92)90125-j
|
[79] | Neely AN, Law EJ, Holder IA (1986) Increased susceptibility to lethal Candida infections in burned mice preinfected with Pseudomonas aeruginosa or pretreated with proteolytic enzymes. Infect Immun 52: 200–204. pmid:2420722
|
[80] | Peters BM, Noverr MC (2013) Candida albicans-Staphylococcus aureus polymicrobial peritonitis modulates host innate immunity. Infect Immun 81: 2178–2189. doi: 10.1128/IAI.00265-13. pmid:23545303
|
[81] | Bodey GP (2001) Pseudomonas aeruginosa infections in cancer patients: have they gone away? Curr Opin Infect Dis 14: 403–407. pmid:11964856 doi: 10.1097/00001432-200108000-00001
|
[82] | Angebault C, Djossou F, Abelanet S, Permal E, Ben Soltana M, et al. (2013) Candida albicans is not always the preferential yeast colonizing humans: a study in Wayampi Amerindians. J Infect Dis 208: 1705–1716. doi: 10.1093/infdis/jit389. pmid:23904289
|
[83] | Reichart PA, Khongkhunthian P, Samaranayake LP, Yau J, Patanaporn V, et al. (2005) Oral Candida species and betel quid-associated oral lesions in Padaung women of Northern Thailand. Mycoses 48: 132–136. pmid:15743432 doi: 10.1111/j.1439-0507.2004.01071.x
|
[84] | Xu J, Mitchell TG (2003) Geographical differences in human oral yeast flora. Clin Infect Dis 36: 221–224. pmid:12522756 doi: 10.1086/345672
|
[85] | Bougnoux ME, Diogo D, Francois N, Sendid B, Veirmeire S, et al. (2006) Multilocus sequence typing reveals intrafamilial transmission and microevolutions of Candida albicans isolates from the human digestive tract. J Clin Microbiol 44: 1810–1820. pmid:16672411 doi: 10.1128/jcm.44.5.1810-1820.2006
|
[86] | Kam AP, Xu J (2002) Diversity of commensal yeasts within and among healthy hosts. Diagn Microbiol Infect Dis 43: 19–28. pmid:12052625 doi: 10.1016/s0732-8893(02)00364-4
|
[87] | Xu J, Boyd CM, Livingston E, Meyer W, Madden JF, et al. (1999) Species and genotypic diversities and similarities of pathogenic yeasts colonizing women. J Clin Microbiol 37: 3835–3843. pmid:10565893
|
[88] | Almeida RS, Brunke S, Albrecht A, Thewes S, Laue M, et al. (2008) the hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog 4: e1000217. doi: 10.1371/journal.ppat.1000217. pmid:19023418
|
[89] | Cornelis P, Bodilis J (2009) A survey of TonB-dependent receptors in fluorescent pseudomonads. Environ Microbiol Rep 1: 256–262. doi: 10.1111/j.1758-2229.2009.00041.x. pmid:23765855
|
[90] | Cuiv PO, Keogh D, Clarke P, O'Connell M (2007) FoxB of Pseudomonas aeruginosa functions in the utilization of the xenosiderophores ferrichrome, ferrioxamine B, and schizokinen: evidence for transport redundancy at the inner membrane. J Bacteriol 189: 284–287. pmid:17056746 doi: 10.1128/jb.01142-06
|
[91] | Llamas MA, Mooij MJ, Sparrius M, Vandenbroucke-Grauls CM, Ratledge C, et al. (2008) Characterization of five novel Pseudomonas aeruginosa cell-surface signalling systems. Mol Microbiol 67: 458–472. pmid:18086184 doi: 10.1111/j.1365-2958.2007.06061.x
|
[92] | Ochsner UA, Johnson Z, Vasil ML (2000) Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa. Microbiology 146 (Pt 1): 185–198. pmid:10658665
|
[93] | Cartron ML, Maddocks S, Gillingham P, Craven CJ, Andrews SC (2006) Feo—transport of ferrous iron into bacteria. Biometals 19: 143–157. pmid:16718600 doi: 10.1007/s10534-006-0003-2
|
[94] | Wang Y, Newman DK (2008) Redox reactions of phenazine antibiotics with ferric (hydr)oxides and molecular oxygen. Environ Sci Technol 42: 2380–2386. pmid:18504969 doi: 10.1021/es702290a
|
[95] | Chatzinikolaou I, Abi-Said D, Bodey GP, Rolston KV, Tarrand JJ, et al. (2000) Recent experience with Pseudomonas aeruginosa bacteremia in patients with cancer: Retrospective analysis of 245 episodes. Arch Intern Med 160: 501–509. pmid:10695690 doi: 10.1001/archinte.160.4.501
|
[96] | Micol JB, de Botton S, Guieze R, Coiteux V, Darre S, et al. (2006) An 18-case outbreak of drug-resistant Pseudomonas aeruginosa bacteriemia in hematology patients. Haematologica 91: 1134–1138. pmid:16885056
|
[97] | Brandl K, Plitas G, Mihu CN, Ubeda C, Jia T, et al. (2008) Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455: 804–807. doi: 10.1038/nature07250. pmid:18724361
|
[98] | Brandtzaeg P (2010) Food allergy: separating the science from the mythology. Nat Rev Gastroenterol Hepatol 7: 380–400. doi: 10.1038/nrgastro.2010.80. pmid:20606633
|
[99] | Beach RC, Menzies IS, Clayden GS, Scopes JW (1982) Gastrointestinal permeability changes in the preterm neonate. Arch Dis Child 57: 141–145. pmid:7065710 doi: 10.1136/adc.57.2.141
|
[100] | Rouwet EV, Heineman E, Buurman WA, ter Riet G, Ramsay G, et al. (2002) Intestinal permeability and carrier-mediated monosaccharide absorption in preterm neonates during the early postnatal period. Pediatr Res 51: 64–70. pmid:11756641 doi: 10.1203/00006450-200201000-00012
|
[101] | Finck-Barbancon V, Goranson J, Zhu L, Sawa T, Wiener-Kronish JP, et al. (1997) ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol Microbiol 25: 547–557. pmid:9302017 doi: 10.1046/j.1365-2958.1997.4891851.x
|
[102] | Kudoh I, Wiener-Kronish JP, Hashimoto S, Pittet JF, Frank D (1994) Exoproduct secretions of Pseudomonas aeruginosa strains influence severity of alveolar epithelial injury. Am J Physiol 267: L551–556. pmid:7977765
|
[103] | Vallis AJ, Finck-Barbancon V, Yahr TL, Frank DW (1999) Biological effects of Pseudomonas aeruginosa type III-secreted proteins on CHO cells. Infect Immun 67: 2040–2044. pmid:10085057
|
[104] | Allewelt M, Coleman FT, Grout M, Priebe GP, Pier GB (2000) Acquisition of expression of the Pseudomonas aeruginosa ExoU cytotoxin leads to increased bacterial virulence in a murine model of acute pneumonia and systemic spread. Infect Immun 68: 3998–4004. pmid:10858214 doi: 10.1128/iai.68.7.3998-4004.2000
|
[105] | Chang W, Small DA, Toghrol F, Bentley WE (2005) Microarray analysis of Pseudomonas aeruginosa reveals induction of pyocin genes in response to hydrogen peroxide. BMC Genomics 6: 115. pmid:16150148
|
[106] | Swanson BL, Colmer JA, Hamood AN (1999) The Pseudomonas aeruginosa exotoxin A regulatory gene, ptxS: evidence for negative autoregulation. J Bacteriol 181: 4890–4895. pmid:10438759
|
[107] | Swanson BL, Hamood AN (2000) Autoregulation of the Pseudomonas aeruginosa protein PtxS occurs through a specific operator site within the ptxS upstream region. J Bacteriol 182: 4366–4371. pmid:10894751 doi: 10.1128/jb.182.15.4366-4371.2000
|
[108] | Goodman AL, Kallstrom G, Faith JJ, Reyes A, Moore A, et al. (2011) Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc Natl Acad Sci U S A 108: 6252–6257. doi: 10.1073/pnas.1102938108. pmid:21436049
|
[109] | Lopez-Medina E, Neubauer MM, Pier GB, Koh AY (2011) RNA isolation of Pseudomonas aeruginosa colonizing the murine gastrointestinal tract. J Vis Exp. doi: 10.3791/3293
|
[110] | Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5: 621–628. doi: 10.1038/nmeth.1226. pmid:18516045
|
[111] | Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11: R106. doi: 10.1186/gb-2010-11-10-r106. pmid:20979621
|
[112] | Samuel BS, Gordon JI (2006) A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc Natl Acad Sci U S A 103: 10011–10016. pmid:16782812 doi: 10.1073/pnas.0602187103
|
[113] | Savli H, Karadenizli A, Kolayli F, Gundes S, Ozbek U, et al. (2003) Expression stability of six housekeeping genes: A proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J Med Microbiol 52: 403–408. pmid:12721316 doi: 10.1099/jmm.0.05132-0
|
[114] | Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212: 77–86. pmid:9661666 doi: 10.1016/s0378-1119(98)00130-9
|
[115] | Mettrick KA, Lamont IL (2009) Different roles for anti-sigma factors in siderophore signalling pathways of Pseudomonas aeruginosa. Mol Microbiol 74: 1257–1271. doi: 10.1111/j.1365-2958.2009.06932.x. pmid:19889096
|
[116] | Morgan AF (1979) Transduction of Pseudomonas aeruginosa with a mutant of bacteriophage E79. J Bacteriol 139: 137–140. pmid:110777
|
[117] | Chuanchuen R, Narasaki CT, Schweizer HP (2002) Benchtop and microcentrifuge preparation of Pseudomonas aeruginosa competent cells. Biotechniques 33: 760, 762–763. pmid:12398182
|
[118] | Riemer J, Hoepken HH, Czerwinska H, Robinson SR, Dringen R (2004) Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Anal Biochem 331: 370–375. pmid:15265744 doi: 10.1016/j.ab.2004.03.049
|
[119] | Stookey LL (1970) Ferrozine—a new spectrophotometric reagent for iron. Anal Chem 42: 779–781. doi: 10.1021/ac60289a016
|
[120] | Carmi R, Carmeli S, Levy E, Gough FJ (1994) (+)-(S)-dihydroaeruginoic acid, an inhibitor of Septoria tritici and other phytopathogenic fungi and bacteria, produced by Pseudomonas fluorescens. J Nat Prod 57: 1200–1205. pmid:7798954 doi: 10.1021/np50111a002
|