全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Serine Phosphorylation of HIV-1 Vpu and Its Binding to Tetherin Regulates Interaction with Clathrin Adaptors

DOI: 10.1371/journal.ppat.1005141

Full-Text   Cite this paper   Add to My Lib

Abstract:

HIV-1 Vpu prevents incorporation of tetherin (BST2/ CD317) into budding virions and targets it for ESCRT-dependent endosomal degradation via a clathrin-dependent process. This requires a variant acidic dileucine-sorting motif (ExxxLV) in Vpu. Structural studies demonstrate that recombinant Vpu/tetherin fusions can form a ternary complex with the clathrin adaptor AP-1. However, open questions still exist about Vpu’s mechanism of action. Particularly, whether endosomal degradation and the recruitment of the E3 ubiquitin ligase SCFβTRCP1/2 to a conserved phosphorylated binding site, DSGNES, are required for antagonism. Re-evaluation of the phenotype of Vpu phosphorylation mutants and naturally occurring allelic variants reveals that the requirement for the Vpu phosphoserine motif in tetherin antagonism is dissociable from SCFβTRCP1/2 and ESCRT-dependent tetherin degradation. Vpu phospho-mutants phenocopy ExxxLV mutants, and can be rescued by direct clathrin interaction in the absence of SCFβTRCP1/2 recruitment. Moreover, we demonstrate physical interaction between Vpu and AP-1 or AP-2 in cells. This requires Vpu/tetherin transmembrane domain interactions as well as the ExxxLV motif. Importantly, it also requires the Vpu phosphoserine motif and adjacent acidic residues. Taken together these data explain the discordance between the role of SCFβTRCP1/2 and Vpu phosphorylation in tetherin antagonism, and indicate that phosphorylation of Vpu in Vpu/tetherin complexes regulates promiscuous recruitment of adaptors, implicating clathrin-dependent sorting as an essential first step in tetherin antagonism.

References

[1]  Neil SJ (2013) The antiviral activities of tetherin. Curr Top Microbiol Immunol 371: 67–104. doi: 10.1007/978-3-642-37765-5_3. pmid:23686232
[2]  Jia B, Serra-Moreno R, Neidermyer W, Rahmberg A, Mackey J, et al. (2009) Species-specific activity of SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2. PLoS Pathog 5: e1000429. doi: 10.1371/journal.ppat.1000429. pmid:19436700
[3]  Le Tortorec A, Neil SJ (2009) Antagonism to and intracellular sequestration of human tetherin by the human immunodeficiency virus type 2 envelope glycoprotein. J Virol 83: 11966–11978. doi: 10.1128/JVI.01515-09. pmid:19740980
[4]  Neil SJ, Zang T, Bieniasz PD (2008) Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451: 425–430. doi: 10.1038/nature06553. pmid:18200009
[5]  Van Damme N, Goff D, Katsura C, Jorgenson RL, Mitchell R, et al. (2008) The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 3: 245–252. doi: 10.1016/j.chom.2008.03.001. pmid:18342597
[6]  Zhang F, Landford WN, Ng M, McNatt MW, Bieniasz PD, et al. (2011) SIV Nef proteins recruit the AP-2 complex to antagonize Tetherin and facilitate virion release. PLoS Pathog 7: e1002039. doi: 10.1371/journal.ppat.1002039. pmid:21625568
[7]  Perez-Caballero D, Zang T, Ebrahimi A, McNatt MW, Gregory DA, et al. (2009) Tetherin inhibits HIV-1 release by directly tethering virions to cells. Cell 139: 499–511. doi: 10.1016/j.cell.2009.08.039. pmid:19879838
[8]  Venkatesh S, Bieniasz PD (2013) Mechanism of HIV-1 virion entrapment by tetherin. PLoS Pathog 9: e1003483. doi: 10.1371/journal.ppat.1003483. pmid:23874200
[9]  Alvarez RA, Hamlin RE, Monroe A, Moldt B, Hotta MT, et al. (2014) HIV-1 Vpu antagonism of tetherin inhibits antibody-dependent cellular cytotoxic responses by natural killer cells. J Virol 88: 6031–6046. doi: 10.1128/JVI.00449-14. pmid:24623433
[10]  Arias JF, Heyer LN, von Bredow B, Weisgrau KL, Moldt B, et al. (2014) Tetherin antagonism by Vpu protects HIV-infected cells from antibody-dependent cell-mediated cytotoxicity. Proc Natl Acad Sci U S A 111: 6425–6430. doi: 10.1073/pnas.1321507111. pmid:24733916
[11]  Pham TN, Lukhele S, Hajjar F, Routy JP, Cohen EA (2014) HIV Nef and Vpu protect HIV-infected CD4+ T cells from antibody-mediated cell lysis through down-modulation of CD4 and BST2. Retrovirology 11: 15. doi: 10.1186/1742-4690-11-15. pmid:24498878
[12]  Veillette M, Desormeaux A, Medjahed H, Gharsallah NE, Coutu M, et al. (2014) Interaction with cellular CD4 exposes HIV-1 envelope epitopes targeted by antibody-dependent cell-mediated cytotoxicity. J Virol 88: 2633–2644. doi: 10.1128/JVI.03230-13. pmid:24352444
[13]  Cocka LJ, Bates P (2012) Identification of alternatively translated Tetherin isoforms with differing antiviral and signaling activities. PLoS Pathog 8: e1002931. doi: 10.1371/journal.ppat.1002931. pmid:23028328
[14]  Galao RP, Le Tortorec A, Pickering S, Kueck T, Neil SJ (2012) Innate sensing of HIV-1 assembly by Tetherin induces NFkappaB-dependent proinflammatory responses. Cell Host Microbe 12: 633–644. doi: 10.1016/j.chom.2012.10.007. pmid:23159053
[15]  Galao RP, Pickering S, Curnock R, Neil SJ (2014) Retroviral Retention Activates a Syk-Dependent HemITAM in Human Tetherin. Cell Host Microbe 16: 291–303. doi: 10.1016/j.chom.2014.08.005. pmid:25211072
[16]  Tokarev A, Suarez M, Kwan W, Fitzpatrick K, Singh R, et al. (2013) Stimulation of NF-kappaB Activity by the HIV Restriction Factor BST2. J Virol 87: 2046–2057. doi: 10.1128/JVI.02272-12. pmid:23221546
[17]  Rollason R, Korolchuk V, Hamilton C, Schu P, Banting G (2007) Clathrin-mediated endocytosis of a lipid-raft-associated protein is mediated through a dual tyrosine motif. J Cell Sci 120: 3850–3858. pmid:17940069 doi: 10.1242/jcs.003343
[18]  McNatt MW, Zang T, Bieniasz PD (2013) Vpu binds directly to tetherin and displaces it from nascent virions. PLoS Pathog 9: e1003299. doi: 10.1371/journal.ppat.1003299. pmid:23633949
[19]  Skasko M, Wang Y, Tian Y, Tokarev A, Munguia J, et al. (2012) HIV-1 Vpu protein antagonizes innate restriction factor BST-2 via lipid-embedded helix-helix interactions. J Biol Chem 287: 58–67. doi: 10.1074/jbc.M111.296772. pmid:22072710
[20]  Vigan R, Neil SJ (2010) Determinants of tetherin antagonism in the transmembrane domain of the human immunodeficiency virus type 1 Vpu protein. J Virol 84: 12958–12970. doi: 10.1128/JVI.01699-10. pmid:20926557
[21]  Agromayor M, Soler N, Caballe A, Kueck T, Freund SM, et al. (2012) The UBAP1 subunit of ESCRT-I interacts with ubiquitin via a SOUBA domain. Structure 20: 414–428. doi: 10.1016/j.str.2011.12.013. pmid:22405001
[22]  Janvier K, Pelchen-Matthews A, Renaud JB, Caillet M, Marsh M, et al. (2011) The ESCRT-0 component HRS is required for HIV-1 Vpu-mediated BST-2/tetherin down-regulation. PLoS Pathog 7: e1001265. doi: 10.1371/journal.ppat.1001265. pmid:21304933
[23]  Douglas JL, Viswanathan K, McCarroll MN, Gustin JK, Fruh K, et al. (2009) Vpu directs the degradation of the human immunodeficiency virus restriction factor BST-2/Tetherin via a {beta}TrCP-dependent mechanism. J Virol 83: 7931–7947. doi: 10.1128/JVI.00242-09. pmid:19515779
[24]  Mangeat B, Gers-Huber G, Lehmann M, Zufferey M, Luban J, et al. (2009) HIV-1 Vpu neutralizes the antiviral factor Tetherin/BST-2 by binding it and directing its beta-TrCP2-dependent degradation. PLoS Pathog 5: e1000574. doi: 10.1371/journal.ppat.1000574. pmid:19730691
[25]  Mitchell RS, Katsura C, Skasko MA, Fitzpatrick K, Lau D, et al. (2009) Vpu antagonizes BST-2-mediated restriction of HIV-1 release via beta-TrCP and endo-lysosomal trafficking. PLoS Pathog 5: e1000450. doi: 10.1371/journal.ppat.1000450. pmid:19478868
[26]  Schubert U, Schneider T, Henklein P, Hoffmann K, Berthold E, et al. (1992) Human-immunodeficiency-virus-type-1-enco?dedVpu protein is phosphorylated by casein kinase II. Eur J Biochem 204: 875–883. pmid:1541298 doi: 10.1111/j.1432-1033.1992.tb16707.x
[27]  Schubert U, Henklein P, Boldyreff B, Wingender E, Strebel K, et al. (1994) The human immunodeficiency virus type 1 encoded Vpu protein is phosphorylated by casein kinase-2 (CK-2) at positions Ser52 and Ser56 within a predicted alpha-helix-turn-alpha-helix-motif. J Mol Biol 236: 16–25. pmid:8107101 doi: 10.1006/jmbi.1994.1114
[28]  Margottin F, Bour SP, Durand H, Selig L, Benichou S, et al. (1998) A novel human WD protein, h-beta TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. Mol Cell 1: 565–574. pmid:9660940 doi: 10.1016/s1097-2765(00)80056-8
[29]  Tokarev AA, Munguia J, Guatelli JC (2011) Serine-threonine ubiquitination mediates downregulation of BST-2/tetherin and relief of restricted virion release by HIV-1 Vpu. J Virol 85: 51–63. doi: 10.1128/JVI.01795-10. pmid:20980512
[30]  Andrew AJ, Miyagi E, Strebel K (2011) Differential effects of human immunodeficiency virus type 1 Vpu on the stability of BST-2/tetherin. J Virol 85: 2611–2619. doi: 10.1128/JVI.02080-10. pmid:21191020
[31]  Schubert U, Strebel K (1994) Differential activities of the human immunodeficiency virus type 1-encoded Vpu protein are regulated by phosphorylation and occur in different cellular compartments. J Virol 68: 2260–2271. pmid:8139011
[32]  Tervo HM, Homann S, Ambiel I, Fritz JV, Fackler OT, et al. (2011) beta-TrCP is dispensable for Vpu's ability to overcome the CD317/Tetherin-imposed restriction to HIV-1 release. Retrovirology 8: 9. doi: 10.1186/1742-4690-8-9. pmid:21310048
[33]  Schmidt S, Fritz JV, Bitzegeio J, Fackler OT, Keppler OT (2011) HIV-1 Vpu blocks recycling and biosynthetic transport of the intrinsic immunity factor CD317/tetherin to overcome the virion release restriction. MBio 2: e00036–00011. doi: 10.1128/mBio.00036-11. pmid:21610122
[34]  Pickering S, Hue S, Kim EY, Reddy S, Wolinsky SM, et al. (2014) Preservation of tetherin and CD4 counter-activities in circulating Vpu alleles despite extensive sequence variation within HIV-1 infected individuals. PLoS Pathog 10: e1003895. doi: 10.1371/journal.ppat.1003895. pmid:24465210
[35]  Dube M, Paquay C, Roy BB, Bego MG, Mercier J, et al. (2011) HIV-1 Vpu antagonizes BST-2 by interfering mainly with the trafficking of newly synthesized BST-2 to the cell surface. Traffic 12: 1714–1729. doi: 10.1111/j.1600-0854.2011.01277.x. pmid:21902775
[36]  Kueck T, Neil SJ (2012) A cytoplasmic tail determinant in HIV-1 Vpu mediates targeting of tetherin for endosomal degradation and counteracts interferon-induced restriction. PLoS Pathog 8: e1002609. doi: 10.1371/journal.ppat.1002609. pmid:22479182
[37]  Bonifacino JS, Traub LM (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72: 395–447. pmid:12651740
[38]  Lau D, Kwan W, Guatelli J (2011) Role of the endocytic pathway in the counteraction of BST-2 by human lentiviral pathogens. J Virol 85: 9834–9846. doi: 10.1128/JVI.02633-10. pmid:21813615
[39]  Jia X, Weber E, Tokarev A, Lewinski M, Rizk M, et al. (2014) Structural basis of HIV-1 Vpu-mediated BST2 antagonism via hijacking of the clathrin adaptor protein complex 1. Elife 3: e02362. doi: 10.7554/eLife.02362. pmid:24843023
[40]  Weinelt J, Neil SJ (2014) Differential sensitivities of tetherin isoforms to counteraction by primate lentiviruses. J Virol 88: 5845–5858. doi: 10.1128/JVI.03818-13. pmid:24623426
[41]  Serra-Moreno R, Jia B, Breed M, Alvarez X, Evans DT (2011) Compensatory changes in the cytoplasmic tail of gp41 confer resistance to tetherin/BST-2 in a pathogenic nef-deleted SIV. Cell Host Microbe 9: 46–57. doi: 10.1016/j.chom.2010.12.005. pmid:21238946
[42]  Zhang F, Wilson SJ, Landford WC, Virgen B, Gregory D, et al. (2009) Nef proteins from simian immunodeficiency viruses are tetherin antagonists. Cell Host Microbe 6: 54–67. doi: 10.1016/j.chom.2009.05.008. pmid:19501037
[43]  Mauxion F, Le Borgne R, Munier-Lehmann H, Hoflack B (1996) A casein kinase II phosphorylation site in the cytoplasmic domain of the cation-dependent mannose 6-phosphate receptor determines the high affinity interaction of the AP-1 Golgi assembly proteins with membranes. J Biol Chem 271: 2171–2178. pmid:8567675 doi: 10.1074/jbc.271.4.2171
[44]  McDonald B, Martin-Serrano J (2008) Regulation of Tsg101 expression by the steadiness box: a role of Tsg101-associated ligase. Mol Biol Cell 19: 754–763. pmid:18077552 doi: 10.1091/mbc.e07-09-0957
[45]  Martin-Serrano J, Neil SJ (2011) Host factors involved in retroviral budding and release. Nat Rev Microbiol 9: 519–531. doi: 10.1038/nrmicro2596. pmid:21677686
[46]  Hirano S, Kawasaki M, Ura H, Kato R, Raiborg C, et al. (2006) Double-sided ubiquitin binding of Hrs-UIM in endosomal protein sorting. Nat Struct Mol Biol 13: 272–277. pmid:16462748 doi: 10.1038/nsmb1051
[47]  Tokarev A, Guatelli J (2011) Misdirection of membrane trafficking by HIV-1 Vpu and Nef: Keys to viral virulence and persistence. Cell Logist 1: 90–102. pmid:21922073 doi: 10.4161/cl.1.3.16708
[48]  Miyagi E, Andrew AJ, Kao S, Strebel K (2009) Vpu enhances HIV-1 virus release in the absence of Bst-2 cell surface down-modulation and intracellular depletion. Proc Natl Acad Sci U S A 106: 2868–2873. doi: 10.1073/pnas.0813223106. pmid:19196977
[49]  Coadou G, Evrard-Todeschi N, Gharbi-Benarous J, Benarous R, Girault JP (2002) HIV-1 encoded virus protein U (Vpu) solution structure of the 41–62 hydrophilic region containing the phosphorylated sites Ser52 and Ser56. Int J Biol Macromol 30: 23–40. pmid:11893391 doi: 10.1016/s0141-8130(01)00184-2
[50]  Coadou G, Gharbi-Benarous J, Megy S, Bertho G, Evrard-Todeschi N, et al. (2003) NMR studies of the phosphorylation motif of the HIV-1 protein Vpu bound to the F-box protein beta-TrCP. Biochemistry 42: 14741–14751. pmid:14674748 doi: 10.1021/bi035207u
[51]  Willbold D, Hoffmann S, Rosch P (1997) Secondary structure and tertiary fold of the human immunodeficiency virus protein U (Vpu) cytoplasmic domain in solution. Eur J Biochem 245: 581–588. pmid:9182993 doi: 10.1111/j.1432-1033.1997.t01-1-00581.x
[52]  Wittlich M, Koenig BW, Stoldt M, Schmidt H, Willbold D (2009) NMR structural characterization of HIV-1 virus protein U cytoplasmic domain in the presence of dodecylphosphatidylcholine micelles. FEBS J 276: 6560–6575. doi: 10.1111/j.1742-4658.2009.07363.x. pmid:19804408
[53]  Jafari M, Guatelli J, Lewinski MK (2014) Activities of transmitted/founder and chronic clade B HIV-1 Vpu and a C-terminal polymorphism specifically affecting virion release. J Virol 88: 5062–5078. doi: 10.1128/JVI.03472-13. pmid:24574397
[54]  Wittlich M, Koenig BW, Willbold D (2008) Structural consequences of phosphorylation of two serine residues in the cytoplasmic domain of HIV-1 VpU. J Pept Sci 14: 804–810. doi: 10.1002/psc.1004. pmid:18186541
[55]  Miyakawa K, Sawasaki T, Matsunaga S, Tokarev A, Quinn G, et al. (2012) Interferon-induced SCYL2 limits release of HIV-1 by triggering PP2A-mediated dephosphorylation of the viral protein Vpu. Sci Signal 5: ra73. doi: 10.1126/scisignal.2003212. pmid:23047923
[56]  Serra-Moreno R, Zimmermann K, Stern LJ, Evans DT (2013) Tetherin/BST-2 antagonism by Nef depends on a direct physical interaction between Nef and tetherin, and on clathrin-mediated endocytosis. PLoS Pathog 9: e1003487. doi: 10.1371/journal.ppat.1003487. pmid:23853598
[57]  Pardieu C, Vigan R, Wilson SJ, Calvi A, Zang T, et al. (2010) The RING-CH ligase K5 antagonizes restriction of KSHV and HIV-1 particle release by mediating ubiquitin-dependent endosomal degradation of tetherin. PLoS Pathog 6: e1000843. doi: 10.1371/journal.ppat.1000843. pmid:20419159
[58]  Neil SJ, Eastman SW, Jouvenet N, Bieniasz PD (2006) HIV-1 Vpu promotes release and prevents endocytosis of nascent retrovirus particles from the plasma membrane. PLoS Pathog 2: e39. pmid:16699598 doi: 10.1371/journal.ppat.0020039
[59]  Martin-Serrano J, Yarovoy A, Perez-Caballero D, Bieniasz PD (2003) Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. Proc Natl Acad Sci U S A 100: 12414–12419. pmid:14519844 doi: 10.1073/pnas.2133846100
[60]  Maldarelli F, Chen MY, Willey RL, Strebel K (1993) Human immunodeficiency virus type 1 Vpu protein is an oligomeric type I integral membrane protein. J Virol 67: 5056–5061. pmid:8331740
[61]  Roux KJ, Kim DI, Raida M, Burke B (2012) A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 196: 801–810. doi: 10.1083/jcb.201112098. pmid:22412018

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133