An enormous development is experimented on the porous materials. The porous was considered a defect on solid materials some years ago, but right now, this defect is an advantage, based on the properties obtained from a micro and mesoporous materials. Microporous, mesoporous and macroporous materials with an uniformed pore distribution offer new properties, such as absorption, adsorption, exchange separation, and catalysis of different compounds, also they can play different roles as hosts for a nanocomposite materials to modify or improve their properties. Today, the structural types of open framework porous compounds have rapidly increased by their unique structural properties, porous size window and accessible void space are critical factors on a medical application.
References
[1]
Kuschel, A. and Polarz, S. (2008) Organosilica Materials with Bridging Phenyl Derivatives Incorporated into the Surfaces of Mesoporous Solids. Advanced Functional Materials, 18, 1272-1280.
http://dx.doi.org/10.1002/adfm.200701252
[2]
Mitra, A., Vázquez-Vázquez, C., López-Quintela, L., Bidyut, P. and Bhaumik, A. (2010) Soft-Templating Approach for the Synthesis of High Surface Area and Superparamagnetic Mesoporous Iron Oxide Material. Microporous and Mesoporous Materials, 131, 373-377. http://dx.doi.org/10.1016/j.micromeso.2010.01.017
[3]
Park, J., Jung, D., Myung, S., Kim, S., Moon, W., Shin, Ch. and Seo, G. (2008) Preparation of Mesoporous Materials with Adjustable Pore Size Using Anionic and Cationic Surfactants. Microporous and Mesoporous Materials, 112, 458- 466. http://dx.doi.org/10.1016/j.micromeso.2007.10.023
[4]
Ozin, G. and Arsenault, A. (2005) Nanochemistry A Chemical Approach to Nanomaterials. ESC Publishing, Canada, 396-417. http://dx.doi.org/10.1002/cjoc.20000180507
[5]
Pang, J., Qiu, K. and Wei, Y. (2000) Synthesis of Mesoporous Silica Materials with Ascorbic Acid as Template via Sol-Gel Process. Chinese Journal of Chemistry, 18, 693-697. http://dx.doi.org/10.1002/cjoc.20000180507
[6]
Ryoo, R. (2009) A Tricontinuous Mesoporous System. Nature Chemistry, 1, 105-106.
http://dx.doi.org/10.1038/nchem.190
[7]
Zhang, S., Ed. (2011) Biological and Biomedical Coating Handbook Applications. CRC Press Taylor & Francis Group, Boca Raton, 378-426.
[8]
Kretlow, J. and Mikos, A. (2008) From Material to Tissue: Biomaterial Development, Scaffold Fabrication, and Tissue Engineering. AIChE Journal, 54, 3048-3067. http://dx.doi.org/10.1002/aic.11610
[9]
Balas, F., Manzano, M., Colilla, M. and Vallet-Regi, M. (2008) L-Trp Adsorption in to Silica Mesoporous Materials to Promote Bone Formation. Acta Biomaterilia, 4, 514-522. http://dx.doi.org/10.1016/j.actbio.2007.11.009
[10]
Izquierdo-Barba, I., Sánchez-Salcedo, S., Colilla, M., Feito, M., Ramírez-Santillán, C., Portolés, M. and Vallet-Regí, M. (2011) Inhibition of Bacterial Adhesion on Biocompatible Zwitterionic SBA-15 Mesoporous Materials. Acta Biomaterialia, 7, 2977-2985. http://dx.doi.org/10.1016/j.actbio.2011.03.005
[11]
Vinu, A., Mori, T. and Ariga, K. (2006) New Families of Mesoporous Materials. Science and Technology of Advanced Materials, 7, 753-771. http://dx.doi.org/10.1016/j.stam.2006.10.007
[12]
Zhang, W.H., Lu, X.B., Xiu, J.H., Hua, Z.L., Zhang, L.X., Robertson, M., Shi, J.L., Yan, D.S. and Holmes, J.D. (2004) Synthesis and Characterization of Biofunctionalized Ordered Mesoporous Materials. Advanced Functional Materials, 14, 544-552. http://dx.doi.org/10.1002/adfm.200305001
[13]
Son, J.H., Kim, C.S. and Yang, J.W. (2012) Comparison of Experimental Porous Silicone Implants and Porous Silicone Implants. Graefe’s Archive for Clinical and Experimental Ophthalmology, 250, 879-885.
http://dx.doi.org/10.1007/s00417-011-1902-7
[14]
Ayral, A., Coq, B. and Fajula, F. (2011) Special Issue of Microporous and Mesoporous Material. Microporous and Mesoporous Materials, 140, 1. http://dx.doi.org/10.1016/j.micromeso.2010.12.006
[15]
Tourne-Peteilh, C., Begu, S., Lerner, D., Galarneau, A., Lafont, U. and Devoisselle, J. (2012) Sol-Gel One-Pot Synthesis in Soft Conditions of Mesoporous Silica Material Ready for Drug Delivery System. Journal of Sol-Gel Science and Technology, 61, 455-462. http://dx.doi.org/10.1007/s10971-011-2646-x
[16]
Fu, T.M., Lu, J., Guo, L.W., Zhang, L.J., Cai, X.P. and Zhu, H.X. (2012) Improving Bioavailability of Silybin by Inclusion into SBA-15 Mesoporous Silica Materials. Journal of Nanoscience and Nanotechnology, 12, 3997-4006.
http://dx.doi.org/10.1166/jnn.2012.5826
[17]
Kinnari, P., Makila, E., Heikkila, T., Salonen, J., Hirvonen, J. and Santos, H. (2011) Comparison of Mesoporous Silicon and Non-Ordered Mesoporous Silica Materials as Drug Carriers for Intraconazole. International Journal of Pharmaceutics, 414, 148-156. http://dx.doi.org/10.1016/j.ijpharm.2011.05.021
[18]
Wang, G., Otuonye, A., Blair, E., Denton, K., Tao, Z.M. and Asefa, T. (2009) Functionalized Mesoporous Materials for Adsorption and Release of Different Drug Molecules: A Comparative Study. Journal of Solid State Chemistry, 182, 1649-1660. http://dx.doi.org/10.1016/j.jssc.2009.03.034
[19]
Lefebvre, F., Putaj, P., Basset, J., Wang, X.X. and Fu, X.Z. (2010) Modification of the Adsorption and Catalytic Properties of Micro and Mesoporous Materials by Reaction with Organometallic Complexes. Science China Chemistry, 53, 1862-1869. http://dx.doi.org/10.1007/s11426-010-4068-y
[20]
Zürner, A., Kirstein, J., D?blinger, M., Br?uchle, C. and Bein, T. (2007) Visualizing Single-Molecule Diffusion in Mesoporous Materials. Nature, 450, 705-709. http://dx.doi.org/10.1038/nature06398
[21]
Qin, Y.C., Ren, H.B., Zhu, F.H., Zhang, L., Shang, C.W., Wei, Z.J. and Luo, M.M. (2011) Preparation of POSS-Based Organic-Inorganic Hybrid Mesoporous Materials Networks through Schiff Base Chemistry. European Polymer Journal, 47, 853-860. http://dx.doi.org/10.1016/j.eurpolymj.2011.02.024
[22]
Giussani, L., Fois, E., Gianotti, E., Tabacchi, G., Gamba, A. and Coluccia, S. (2010) On the Compatibility Criteria for Protein Encapsulation inside Mesoporous Materials. ChemPhysChem, 11, 1757-1762.
http://dx.doi.org/10.1002/cphc.200901038
[23]
Toru, O., Masahiro, T., Megumi, H. and Katsuya, K., (2012) Binding Activity of Avidin to the Biotin within Mesoporous Silica Materials for Bioanalytical Applications. Analytical Biochemistry, 425, 1-9.
http://dx.doi.org/10.1016/j.ab.2012.02.037
[24]
Tozuka, Y., Sugiyama, E. and Takeuchi, H. (2010) Release Profile of Insulin Entrapped on Mesoporous Materials by Freeze-Thaw Method. International Journal of Pharmaceutics, 386, 172-177.
http://dx.doi.org/10.1016/j.ijpharm.2009.11.012
[25]
Prokopowicz, M. and Przyjazny, A. (2007) Sybthesis of Sol-Gel Mesoporoues Silica Materials Providing a Slow Release of Doxorubicin. Journal of Microencapsulation, 24, 694-713. http://dx.doi.org/10.1080/02652040701547658
[26]
Nie, D.X., Liang, Y., Zhou, T.S., Li, X.H., Shi, G.Y. and Jin, L.T. (2010) Electrochemistry and Electrcatalytic of Hemoglobin on FDU-15-Pt Mesoporous Materials. Bioelectrochemistry, 79, 248-253.
http://dx.doi.org/10.1016/j.bioelechem.2009.12.008
[27]
Asefa, T., Otuonye, A., Wang, G., Blair, E., Vathyam, R. and Denton, K. (2009) Controlling Adsorption and Release of Drug and Small Molecules by Organic Functional of Mesoporous Material. Adsorption, 15, 287-299.
http://dx.doi.org/10.1007/s10450-009-9176-7
[28]
Xia, X., Zhou, C.F., Ballell, L. and Garcia-Bennett, A. (2012) In Vivo Enhancement in Bioavailability of Atazanavir in the Presence of Proton-Pump Inhibitors using Mesoporous Materials. ChemMedChem, 7, 43-48.
http://dx.doi.org/10.1002/cmdc.201100500
[29]
Qu, F.Y., Zhu, G.S., Lin, H.M., Zhang, W.W., Sun, J.Y., Li, S.G. and Qiu, S.L. (2006) A Controlled Release of Ibuprofen by Systematically Tailoring the Morphology of Mesoporous Silica Materials. Journal of Solid State Chemistry, 179, 2027-2035. http://dx.doi.org/10.1016/j.jssc.2006.04.002
[30]
Nemati, P., Imani, M., Farahmandghavi, F., Mirzadeh, H., Marzban-Rad, E. and Nasrabadi, A. (2013) Artificial Neural Networks for Bilateral Prediction of Formulation Parameters and Drug Release Profiles from Cochlear Implant Coatings Fabricated as Porous Monolithic Devices Base on Silicone Rubber. Journal of Pharmacy and Pharmacology, 66, 624-638. http://dx.doi.org/10.1111/jphp.12187
[31]
Yuan, F., Thiele, G. and Wang, D. (2011) Nanomedicine Development for Autoimmune Diseases. Drug Development Research, 72, 703-716. http://dx.doi.org/10.1002/ddr.20479
[32]
Kilian, K., Bocking, T., Gaus, K. and Gooding, J. (2008) Introducing Distinctly Different Chemical Functionalities onto the Internal and External Surfaces of Masoporous Materials. Angewandte Chemie, 120, 2737-2739.
http://dx.doi.org/10.1002/ange.200704784
[33]
Regí, M., García, M. and Colilla, M. (2013) Biomedical Applica-tions of Mesoporous Ceramics, Drug Delivery, Smart Materials and Bone Tissue Engineering. CRC Press, New York, 149-155.
[34]
Tasciotti, E., Liu, X.W., Bhavane, R., Plant, K., Leonard, A., Prince, B., Cheng, M., Decuzzi. P., Tour, J., Robertson, F. and Ferrari, M. (2008) Mesoporous Silicon Particles as a Multistage Delivery System for Imaging and Therapeutic Applications. Nature Nanotechnology, 3, 151-157. http://dx.doi.org/10.1038/nnano.2008.34
[35]
Cormode, D., Skajaa, T., Fayad, Z. and Mulder, W. (2009) Nano-technology in Medical Imaging: Probe Design and Applications. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 992-1000.
http://dx.doi.org/10.1161/ATVBAHA.108.165506
[36]
Peinetti, A., González, G. and Battaclini, F. (2010) Mod-eling the Electrochemical Response of Mesoporous Materials Toward Its Application to Biomolecular Detection. Elec-trochemical, 22, 1329-1336.
http://dx.doi.org/10.1002/elan.200900572
[37]
Melde, B. and Johnson, B. (2010) Mesoporous Materials in Sens-ing Morphology and Functionality at the Meso-Inter- face. Analytical and Bioanalytical Chemistry, 398, 1565-1573. http://dx.doi.org/10.1007/s00216-010-3688-6
[38]
Liu, R., Wang, X.D., Aihara, K. and Chen, L.N. (2014) Early Diagnosis of Complex Diseases by Molecular Biomarkers, Network Biomarkers, and Dynamical Network Biomarkers. Medicinal Research Reviews, 34, 455-478.
http://dx.doi.org/10.1002/med.21293
[39]
Li, F., Dever, B., Zhang, H.Q., Li, X.F. and Le, C. (2012) Mesoporous Materials in Peptidome Analysis. Angewandte Chemie, 51, 3518-1519. http://dx.doi.org/10.1002/anie.201107849
[40]
Lee, C.H., Lin, T.S. and Mou, C.Y. (2009) Mesoporous Materials for Encapsulating Enzymes. Nano Today, 4, 165-179.
http://dx.doi.org/10.1016/j.nantod.2009.02.001
[41]
Hasanzadeh, M., Shadjou, N., De la Guardia, M., Eskandani, M. and Shekhzadeh, P. (2012) Mesoporous Silica-Base Materials for Use in Biosensors. Trends in Analitical Chemistry, 33, 117-129.
http://dx.doi.org/10.1016/j.trac.2011.10.011
[42]
Tu, Q., Wang, J.C., Zhang, Y., Liu, R., Liu, W., Ren, L., Shen, S., Xu, L. and Wang, J. (2012) Surface Modification of Poly(dimethylsiloxane) and Its Applications in Microfluid-ics-Base Biological Analysis. Analytical Chemistry, 31, 177-192.
[43]
Shimomura, T., Itoh, T., Sumiya, T., Mizukami, F. and Ono, M. (2008) Electrochemical Biosensor for the Detection of Formaldehyde Base on Enzyme Immobilization in Mesoporous Silica Materials. Sensors and Actuators B: Chemical, 135, 268-275. http://dx.doi.org/10.1016/j.snb.2008.08.025
[44]
Guo, G.C., Wan, J.J., Qian, K., Yu, C.Z., Kong, J.L., Yang, P.Y. and Liu, B.H. (2011) TiO2-Functionalized Mesoporous Materials for Sensitive Analysis of Multi-Phosphopeptides. Science China Chemistry, 54, 1327-1333.
http://dx.doi.org/10.1007/s11426-011-4344-5
[45]
Schüth, F. and Schmidt, W. (2002) Microporous and Mesopo-rous Materials. Advanced Materials, 14, 629-638.
http://dx.doi.org/10.1002/1521-4095(20020503)14:9<629::AID-ADMA629>3.0.CO;2-B
[46]
Calvillo, L., Celorrio, V., Moliner, R., Cabot, P., Esparbe, I. and Lazaro, M. (2008) Control of Textural Properties of Ordered Mes-oporous Materials. Microporous and Mesoporous Materials, 116, 292-298.
http://dx.doi.org/10.1016/j.micromeso.2008.04.015
[47]
Xuan, W.M., Zhu, C.F., Liu, Y. and Cui, Y. (2012) Mesoporous Metal-Organic Framework Materials. Chemical Society Reviews, 41, 1677-1691. http://dx.doi.org/10.1039/C1CS15196G
[48]
Yang, P.P., Gai, S.L. and Lin, J. (2012) Functionalized Mesoporous Silica Materials for Controlled Drug Delivery. Chemical Society Reviews, 41, 3679-3698. http://dx.doi.org/10.1039/c2cs15308d