We review several recent theoretical and experimental results in the study of exciton condensates. This includes the present experimental advances in the study of exciton condensates both using layers and coupled bilayers. We will shortly illustrate the different phases of exciton condensates. We focus especially on the Bardeen-Cooper-Schrieffer-like phase and illustrate the similarities to superconductors. Afterwards, we want to illustrate several recent advances and proposals for measuring the different phases of superconductors. In the remainder of this short review, we will provide an outlook for the possibilities and complications for future technical applications of exciton condensates.
References
[1]
Lozovik, Y.E. and Berman, O.L. (1996) Phase Transitions in a System of Two Coupled Quantum Wells. Journal of Experimental and Theoretical Physics Letters, 64, 573-579. http://dx.doi.org/10.1134/1.567264
[2]
Bose, S.N. (1924) Plancks Gesetz und Lichtquantenhypothese. Zeitschrift für Physik, 26, 178-181. http://dx.doi.org/10.1007/BF01327326
[3]
Breyel, D., Schmidt, T.L. and Komnik, A. (2012) Rydberg Crystallization Detection by Statistical Means. Physical Review A, 86, Article ID: 023405. http://dx.doi.org/10.1103/PhysRevA.86.023405
[4]
Robicheaux, F., Hernández, J.V., Topçu, T. and Noordam, L.D. (2004) Simulation of Coherent Interactions between Rydberg Atoms. Physical Review A, 70, Article ID: 042703. http://dx.doi.org/10.1103/PhysRevA.70.042703
[5]
Bardeen, J., Cooper, L.N. and Schrieffer, J.R. (1957) Theory of Superconductivity. Physical Review, 108, 1175. http://dx.doi.org/10.1103/PhysRev.108.1175
[6]
Onnes, H.K. (1911) The Resistance of Pure Mercury at Helium Temperatures. Commun. Phys. Lab. Univ. Leiden, 12, 1.
Altland, A. and Zirnbauer, M.R. (1997) Nonstandard Symmetry Classes in Mesoscopic Normal-Superconducting Hybrid Structures. Physical Review B, 55, 1142. http://dx.doi.org/10.1103/PhysRevB.55.1142
[9]
Soller, H. and Breyel, D. (2013) Signatures in the Conductance for Phase Transitions in Excitonic Systems. Modern Physics Letters B, 27, Article ID: 1350185. http://dx.doi.org/10.1142/S0217984913501856
[10]
Seradjeh, B. (2012) Majorana Edge Modes of Topological Exciton Condensate with Superconductors. Physical Review B, 86, Article ID: 121101. http://dx.doi.org/10.1103/physrevb.86.121101
[11]
Budich, J.C., Trauzettel, B. and Michetti, P. (2014) Time Reversal Symmetric Topological Exciton Condensate in Bilayer HgTe Quantum Wells. Physical Review Letters, 112, Article ID: 146405. http://dx.doi.org/10.1103/PhysRevLett.112.146405
[12]
Snoke, D. (2002) Spontaneous Bose Coherence of Excitons and Polaritons. Science, 298, 1368-1372. http://dx.doi.org/10.1126/science.1078082
[13]
Gärtner, A., Prechtel, L., Schuh, D., Holleitner, A.W. and Kotthaus, J.P. (2007) Micropatterned Electrostatic Traps for Indirect Excitons in Coupled GaAs Quantum Wells. Physical Review B, 76, Article ID: 085304. http://dx.doi.org/10.1103/PhysRevB.76.085304
[14]
Comte, C. and Nozieres, P. (1982) Exciton Bose Condensation: The Ground State of an Electron-Hole Gas-I. Mean Field Description of a Simplified Model. Journal de Physique, 43, 1069-1081. http://dx.doi.org/10.1051/jphys:019820043070106900
[15]
High, A.A., Leonard, J.R., Hammack, A.T., Fogler, M.M., Butov, L.V., Kavokin, A.V., et al. (2012) Spontaneous Coherence in a Cold Exciton Gas. Nature, 483, 584-588. http://dx.doi.org/10.1038/nature10903
[16]
Zwierlein, M.W., Stan, C.A., Schunck, C.H., Raupach, S.M.F., Kerman, A.J. and Ketterle, W. (2004) Condensation of Pairs of Fermionic Atoms near a Feshbach Resonance. Physical Review Letters, 92, Article ID: 120403. http://dx.doi.org/10.1103/PhysRevLett.92.120403
[17]
Gorbachev, R.V., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Tudorovskiy, T., Grigorieva, I.V., et al. (2012) Strong Coulomb Drag and Broken Symmetry in Double-Layer Graphene. Nature Physics, 8, 896-901. http://dx.doi.org/10.1038/nphys2441
[18]
Astrakharchik, G.E., Boronat, J., Kurbakov, I.L. and Lozovik, Y.E. (2007) Quantum Phase Transition in a Two-Dimensional System of Dipoles. Physical Review Letters, 98, Article ID: 060405. http://dx.doi.org/10.1103/PhysRevLett.98.060405
[19]
Breyel, D., Soller, H., Schmidt, T.L. and Komnik, A. (2014) Detecting an Exciton Crystal by Statistical Means. Physica B: Condensed Matter, 441, 33-36. http://dx.doi.org/10.1016/j.physb.2014.01.042
[20]
Su, J.J. and MacDonald, A.H. (2008) How to Make a Bilayer Exciton Condensate Flow. Nature Physics, 4, 799-802. http://dx.doi.org/10.1038/nphys1055
[21]
Min, H., Bistritzer, R., Su, J.J. and MacDonald, A.H. (2008) Room-Temperature Superfluidity in Graphene Bilayers. Physical Review B, 78, Article ID: 121401. http://dx.doi.org/10.1103/PhysRevB.78.121401
[22]
Kharitonov, M.Y. and Efetov, K.B. (2008) Electron Screening and Excitonic Condensation in Double-Layer Graphene Systems. Physical Review B, 78, Article ID: 241401. http://dx.doi.org/10.1103/PhysRevB.78.241401
[23]
Nandi, D., Finck, A.D.K., Eisenstein, J.P., Pfeiffer, L.N. and West, K.W. (2012) Exciton Condensation and Perfect Coulomb Drag. Nature, 488, 481-484. http://dx.doi.org/10.1038/nature11302
[24]
Dolcini, F., Rainis, D., Taddei, F., Polini, M., Fazio, R. and MacDonald, A.H. (2010) Blockade and Counterflow Supercurrent in Exciton-Condensate Josephson Junctions. Physical Review Letters, 104, Article ID: 027004. http://dx.doi.org/10.1103/PhysRevLett.104.027004
[25]
Soller, H., Dolcini, F. and Komnik, A. (2012) Nanotransformation and Current Fluctuations in Exciton Condensate Junctions. Physical Review Letters, 108, Article ID: 156401. http://dx.doi.org/10.1103/PhysRevLett.108.156401
[26]
Soller, H. and Komnik, A. (2013) Current Noise and Higher Order Fluctuations in Semiconducting Bilayer Systems. Fluctuation and Noise Letters, 12, Article ID: 13400014. http://dx.doi.org/10.1142/S0219477513400014
[27]
Oreg, Y., Refael, G. and von Oppen, F. (2010) Helical Liquids and Majorana Bound States in Quantum Wires. Physical Review Letters, 105, Article ID: 177002. http://dx.doi.org/10.1103/PhysRevLett.105.177002
[28]
Gangadharaiah, S., Braunecker, B., Simon, P. and Loss, D. (2011) Majorana Edge States in Interacting One-Dimensional Systems. Physical Review Letters, 107, Article ID: 036801. http://dx.doi.org/10.1103/PhysRevLett.107.036801
[29]
Soller, H. and Komnik, A. (2014) Charge Transfer Statistics of Transport through Majorana Bound States. Physica E: Low-Dimensional Systems and Nanostructures, 63, 99-104. http://dx.doi.org/10.1016/j.physe.2014.05.020